WULCRAFT Steel Joists & Joist Girders #### **Contact the Vulcraft Sales Corporation Office nearest you:** | Albuquerque, NM Area | Greenville, NC Area | North Alabama Area | |----------------------------|------------------------------|-------------------------| | Ph. (505) 892-0707 | Ph. (252) 493-0333 | Ph. (256) 845-2460 | | Fax (505) 892-2727 | Fax (252) 493-0555 | Fax (256) 845-2823 | | Atlanta, GA Area | Houston, TX Area | Oklahoma City, OK Area | | Ph. (770) 338-9363 | Ph. (281) 477-6700 | Ph. (405) 715-2844 | | Fax (770) 338-9757 | Fax (281) 477-6701 | Fax (405) 715-5855 | | Baltimore, MD Area | Indianapolis, IN Area | Philadelphia, PA Area | | Ph. (410) 998-0800 | Ph. (317) 576-5399 | Ph. (610) 292-8009 | | Fax (410) 998-0801 | Fax (317) 576-5395 | Fax (610) 292-8155 | | Birmingham, AL Area | Jackson, MS Area | Phoenix, AZ Area | | Ph. (205) 380-0070 | Ph. (601) 936-6215 | Ph. (480) 730-3012 | | Fax (205) 380-0077 | Fax (601) 936-6216 | Fax (480) 730-2824 | | Chicago, IL Area | Jacksonville, FL Area | Pittsburgh, PA Area | | Ph. (630) 887-1400 | Ph. (904) 880-1150 | Ph. (724) 695-8200 | | Fax (630) 887-1477 | Fax (904) 880-1151 | Fax (724) 695-8628 | | Columbia, SC Area | Kansas City, KS Area | Richmond, VA Area | | Ph. (803) 732-5557 | Ph. (913) 341-9299 | Ph. (804) 379-3704 | | Fax (803) 732-5551 | Fax (913) 341-5764 | Fax (804) 379-3709 | | Dallas, TX Area | Knoxville, TN Area | Rochester, NY Area | | Ph. (214) 340-1883 | Ph. (865) 690-6388 | Ph. (585) 394-8400 | | Fax (214) 340-5897 | Fax (865) 690-6389 | Fax (585) 394-8488 | | Danbury, CT Area | Lexington, KY Area | Salt Lake City, UT Area | | Ph. (203) 791-1227 | Ph. (859) 271-2591 | Ph. (801) 355-0431 | | Fax (203) 791-8657 | Fax (859) 271-2580 | Fax (801) 621-0927 | | Dayton, OH Area | Little Rock, AR Area | San Antonio, TX Area | | Ph. (937) 390-2300 | Ph. (501) 758-6424 | Ph. (210) 655-9070 | | Fax (937) 390-2333 | Fax (501) 758-6427 | Fax (210) 655-9504 | | Denver, CO Area | Los Angeles, CA Area | San Francisco, CA Area | | Ph. (303) 757-6323 | Ph. (714) 957-5713 | Ph. (925) 229-1020 | | Fax (303) 757-6324 | Fax (714) 957-8871 | Fax (925) 229-2469 | | Des Moines, IA Area | Memphis, TN Area | Seattle, WA Area | | Ph. (515) 270-2500 | Ph. (901) 751-2154 | Ph. (425) 957-7252 | | Fax (515) 270-8849 | Fax (901) 759-1152 | Fax (425) 957-7295 | | Detroit, MI Area | Miami, FL Area | St. Louis, MO Area | | Ph. (248) 486-6166 | Ph. (954) 785-8695 | Ph. (314) 894-6076 | | Fax (248) 486-6169 | Fax (954) 785-8696 | Fax (314) 894-9173 | | Fargo, ND Area | Milwaukee/Green Bay, WI Area | Tampa, FL Area | | Ph. (701) 235-6605 | Ph. (262) 251-5666 | Ph. (813) 621-0684 | | Fax (701) 234-1966 | Fax (262) 251-7065 | Fax (813) 626-4955 | | Ft. Wayne/S. Bend, IN Area | Minneapolis, MN Area | Youngstown, OH Area | | Ph. (260) 337-1800 | Ph. (763) 425-4399 | Ph. (330) 726-8833 | | Fax (260) 337-1801 | Fax (763) 425-6905 | Fax (330) 726-0694 | | Grand Rapids, MI Area | Nashua, NH Area | | | Ph (616) 0/0_2106 | Dh (603) 804-1146 | | Ph. (603) 894-1146 Fax (603) 894-1149 Nashville, TN Area Ph. (615) 889-6673 Fax (615) 889-0818 Ph. (616) 949-2106 Fax (616) 949-6694 Greensboro, NC Area Ph. (336) 294-9544 Fax (336) 294-7636 #### **TABLE OF CONTENTS** | VULCRAFT DESIGN NOTICE | 4 | |--|-----| | A. Joist Design Commentary 1. Vibration 2. Deflection 3. How to Specify Concentrated &Other Non-Uniform Loads on Steel Joists 4. Recycled Content – LEED Program | 5 | | K AND KCS SERIES | 9 | | ACCESSORIES AND DETAILS A. K Series Joist Substitutes B. 2.5K Series and Loose Outriggers C. K Series Top Chord Extensions and Extended Ends D. K Series Extensions LRFD and ASD Load Tables E. K Series Open Web Steel Joists F. LH and DLH Series Details | 35 | | LH AND DLH SERIES A. General Information B. LH and DLH Series Specifications C. LH Series LRFD and ASD Load Tables D. DLH Series LRFD and ASD Load Tables | 49 | | SLH SERIES A. General Information B. SLH Details C. SLH-Load Tables D. SLH-Specifications | 73 | | A. General Information B. Joist Girder Details C. Bottom Chord Brace Tables D. Joist Girders in Moment Resistant Frames E. Joist Girder Specifications F. Joist Girder LRFD and ASD Weight Tables | 89 | | FIRE RESISTANCE RATINGS WITH STEEL JOIST AND JOIST GIRDERS | 113 | | ECONOMICAL JOIST GUIDE | 123 | | RECOMMENDED CODE OF STANDARD PRACTICE | | | GLOSSARY | | | OSHA SAFETY STANDARDS FOR STEEL ERECTION | 148 | | PLIBLICATIONS | 157 | #### FRONT COVER PICTURE: The Prairie School - Racine, Wisconsin This 68,000 sq. ft facility included a new locker room, fitness and weight training areas, a field house, and a track. The primary framing system consisted of a braced, compound-curved steel frame supporting long span barrel vaulted steel joists at the roof with precast plank supported on a steel frame and load bearing masonry walls at the floor. The structure was supported on conventional spread footings. The building featured large areas of clerestory glazing and curvilinear form. #### VULCRAFT LOCATIONS #### **ALABAMA** 7205 Gault Avenue N. Fort Payne, Alabama 35967 P.O. Box 680169 Fort Payne, Alabama 35968 (256) 845-2460 • Fax: (256) 845-2823 email: sales@vulcraft-al.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **INDIANA** 6610 County Road 60 P.O. Box 1000 St.Joe, Indiana 46785 (260) 337-1800 • Fax: (260) 337-1801 email: sales@vulcraft-in.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **NEBRASKA** 1601 West Omaha Avenue Norfolk, Nebraska 68701 P.O. Box 59 Norfolk, Nebraska 68702 (402) 644-8500 • Fax: (402) 644-8528 email: sales@vulcraft-ne.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **NEW YORK** 5362 Railroad Street P.O. Box 280 Chemung, New York 14825 (607) 529-9000 • Fax: (607) 529-9001 email: sales@vulcraft-ny.com ISO 9001 Certified ISO 14001 Certified Joists & Deck #### VULCRAFT LOCATIONS #### **SOUTH CAROLINA** 1501 West Darlington Street P.O. Box 100520 Florence, South Carolina 29501 (843) 662-0381 • Fax: (843) 662-3132 email: sales@vulcraft-sc.com > ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **TEXAS** 287 North Main Extension P.O. Box 186 Grapeland, Texas 75844 (936) 687-4665 • Fax: (936) 687-4290 email: sales@vulcraft-tx.com > ISO 9001 Certified ISO 14001 Certified Joists & Deck #### **UTAH** 1875 West Highway 13 South P.O. Box 637 Brigham City, Utah 84302 (435) 734-9433 • Fax: (435) 723-5423 email: sales@vulcraft-ut.com > ISO 9001 Certified ISO 14001 Certified Joists #### A WORD ABOUT QUALITY In manufacturing steel joists, there can be no compromise on quality. Your business depends on it. Our reputation and success depends on it. As the largest manufacturer of steel joists in the United States, a lot of buildings and a lot of people depend on Vulcraft for consistently high standards of quality that are demonstrated in reliable performance. In the manufacturing of steel joists and joist girders, Vulcraft uses high quality steel. Welding to exact specifications is the key to making structurally sound joists — and the most critical step in the entire process. This being the case, all Vulcraft welders are qualified to American Welding Society standards. All welds are in accordance with the Steel Joist Institute's welding criteria and all Vulcraft joists are manufactured to meet the required design loads of the specifying professional. To further insure the precision and quality of every weld, every Vulcraft quality assurance inspector is also certified to these same high standards. Furthermore Vulcraft's quality assurance supervisors report directly to the engineering manager. Vulcraft also employs an ongoing program of mechanical testing that includes full scale load tests at every facility. As the leading manufacturer of steel joists and joist girders in the United States, Vulcraft's reputation depends on successfully managed quality control programs. That's why quality is important at Vulcraft. You have our word on it. #### **NOTICE** Vulcraft, a Division of Nucor Corporation, has provided this catalog for use by engineers and architects in designing and using Vulcraft open web joists and open web girders. It includes all products available at the time of printing. Vulcraft reserves the right to change, revise or withdraw any Products or procedures without notice. The information presented in this catalog has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability and applicability by an engineer, architect or other licensed professional. Vulcraft is a manufacturer of open web steel joists, joist girders, floor deck and roof deck. Vulcraft employs a staff of engineers for the design, manufacture and marketing of its products. Vulcraft does not accept the responsibility as the design professional of record for any structure. Vulcraft accepts the delegation of the engineering responsibility only for the products it manufactures, provided the application and applicable loading for these products are specified by the design professional of record. Vulcraft provides engineering for the design of its products and does not displace the need on any project for a design professional of record. #### **FLOOR VIBRATION** Floor vibration occurs, in varying degrees, in all types of building construction. Unlike steady state vibration, which can be isolated, vibration due to human impact is inconsistent in amplitude and frequency and therefore, more difficult to control. The Steel Joist Institute and Nucor Research and
Development have studied this phenomenon for many years. Laboratory research has been performed and numerous buildings, exhibiting both good and bad characteristics, were tested using seismic recording instruments. SJI Technical Digest #5 (1988) and AISC / CISC Steel Design Guide 11 (1997) discuss in detail methods for calculating vibrational properties for joist supported floors. The vast majority of structures, including those utilizing steel joists, do not exhibit floor vibrations severe enough to be considered objectionable. However, human sensitivity to vibratory motion varies, and a satisfactory framing solution is dependent upon the sound judgment of qualified structural engineers. #### **DEFINITIONS** Floor vibration is measured in terms of acceleration amplitude, displacement amplitude, and frequency. These factors are not objectionable to all people at the same level since human sensitivity varies. Acceleration amplitude is the maximum acceleration caused by a force excitation. Displacement amplitude is defined as the magnitude or total distance traveled by each oscillation of the vibration. Frequency is the term used to describe the speed of the oscillations and is expressed in cycles per second or Hz. Acceleration is the only vibration factor which humans can sense. Damping is defined as the rate of decay of amplitude. The following observations, which were determined from research data to be beneficial in reducing vibration levels, are recommended only as a guide. OPEN FLOOR AREAS are most subject to vibrational problems. Modern "electronic offices" tend to have lower live loading and damping, and hence can potentially be more prone to floor vibration. Partitions, file cabinets, book stacks, heavy furnishings and even crowds of people provide additional damping and minimize complaints. THICKER FLOOR SLABS are an economical solution to floor vibration. Additional thickness increases floor system stiffness transverse to the joists, thus reducing the vibration. The additional mass of the system will reduce the objectionable vibration. WIDER JOIST SPACINGS improve vibrational characteristics only when combined with thicker floor slabs. The resulting increase in joist size does not contribute significantly to the composite section. When used with a thicker slab, greater resistance to vibration can be achieved, and, since fewer pieces must be installed, may be more economical. PARTITIONS introduce damping and usually eliminate vibration problems. They will be effective either above or below a floor as long as they are connected to the floor. Partitions below a joist supported floor ideally should be in direct contact with the steel deck. If partitions below a joist supported floor are in direct contact with the joists, the joist bottom chord and webs must be designed for such intermediate support conditions. SUPPORT FRAMING BEAMS sometimes contribute to floor vibration. The natural frequency and amplitude for both the joist and supporting joist girders or hot-rolled girders need to be calculated. In this manner the resulting system acceleration or displacement and frequency can be determined from which the performance of the system can be predicted. INCREASING JOIST STIFFNESS above that which is required by live load deflection may be beneficial. A higher frequency floor is generally a better floor for most applications. Increasing the stiffness of the steel joists themselves results in increasing the frequency and slightly decreasing the acceleration or displacement of the floor vibration. BRIDGING of all standard types provide equal floor vibrational characteristics. LONGER FLOOR SPANS have many advantages over shorter spans, both in construction cost and in vibrational response. Floor spans over 40 feet with a 2-1/2" thick concrete slab give a vibrational frequency in the 3 - 5 cycles per second range. There are many long spanning joist supported floors that perform satisfactorily. PC-based software to evaluate vibration of joist supported floor systems is available from the STEEL JOIST INSTITUTE 3127 Mr. Joe White Avenue Myrtle Beach, SC 29577 phone (843) 626-1995 and STRUCTURAL ENGINEERS, INC. 537 Wisteria Drive Radford, VA 24141 phone (540) 731-3330 #### **CONCLUSIONS:** Partitions eliminate vibration problems. When a floor area cannot have partitions, increasing the slab thickness and/or increasing the joist stiffness are the most economical and effective ways to reduce objectionable vibrations. For more information refer to Steel Joist Institute Technical Digest No. 5 "Vibration of Steel Joist-Concrete Slab Floors", and the AISC / CISC Steel Design Guide 11 "Floor Vibrations Due to Human Activity". #### **DEFLECTION OF STEEL JOISTS** The deflection of a steel joist when loaded with a uniformly-distributed load depends upon the following factors: w= uniformly-distributed load carried by the joist (plf) L= (span of the joist -.33)(ft.) E= modulus of elasticity of steel (29,000,000 psi) I= 26.767 W_{LL} (L3) (10⁻⁶) where W_{LL}=red figure in load table Tests have shown that deflection at mid-span may be determined with reasonable accuracy using the following formula: Deflection (inches)= 1.15x5wL⁴ (12³) = 384EI 25.88wL⁴ Example: Determine the approximate total load deflection of a 24K8 for the following conditions: W=280 plf L=40.0 ft $W_{II} = 161 \text{ plf}$ E=29,000,000 psi I=26.767(161) (40-.33)3 (10-6)= 269.0 in.4 Deflection= $25.88(280)(40-.33)^4 = 2.30$ in. 29,000,000(269) # HOW TO SPECIFY JOISTS FOR CONCENTRATED LOADS ON STEEL JOISTS When specifying joists for concentrated loads, the specifying professional should first attempt to specify a larger standard joist or a KCS series joist. The joist specified must have adequate moment and shear resistance throughout the length of the joist. The shear resistance of K or LH series joists varies throughout the length of the joist. The shear capacity of the joist must be checked at every location by use of a shear diagram showing the allowable shear envelope created by the uniform design load of the joist (given in the table), versus the actual shear diagram. This diagram can be easily drawn with free software (Vulcraft Assistant Program) available at our web site www.vulcraft.com. The following diagram is an example of a 40' joist with a 180 plf uniform load plus a concentrated load of 1900 lbs. at 17' from the left end. In this case, using the developed 399 plf load, either a 30K10 with an 11% stress reversal, or a standard 26KCS3 could be specified. Web members have a 5% stress reversal reserve capacity. If a stress reversal is larger than 5%, clearly specify the stress reversal with the joists. An "SP" is not required as long as the stress reversal requirement is clearly specified. When a suitable K or LH series joist cannot be specified, use the required moment and shear to select a KCS series joist or use double joists to attain the required capacity. Note that LH series have deeper standard bearing depths than K or KCS series joists. In some cases, a standard joist cannot be reasonably specified. In this case, <u>all</u> uniform, non-uniform (such as drift loads or varying uniform loads) and concentrated loads must be <u>given</u> on the drawing or load diagram <u>with all dimensions given</u>. The drawback of this method is that the exact dimensions and locations must be given. Often this information is not available at the time of joist fabrication. Regardless of whether K-series, KCS-series or LH-series joists are specified, it is important to note that even though sufficient shear and moment capacity are provided within the special joist, the localized bending of the chord members due to concentrated loading between panel points is not considered. The joist design generally presumes that all concentrated loads are to be applied at panel points. When this is not the case, the specifying professional must specify on the structural drawings of the contract documents that a field installed member be located at all concentrated loads not occurring at panel points (see detail C1). If the magnitude and locations of all loads are provided on the structural drawings, Vulcraft can design for the localized chord bending due to the load at the locations given. The second alternative is the most economical. **DETAIL C1** #### **VARYING UNIFORM LOADS ON STEEL JOISTS** The selection process of a joist for varying uniform loads such as drift loads or stepped uniform loads is essentially the same as that for concentrated loads. For K-series joists where the uniform load exceeds 550 pounds per lineal foot, the only options are: double joists or the use of special (SP) joists. Again a load diagram should be shown on the structural drawings. # 2006 RECYCLED CONTENT OF NUCOR STEEL PRODUCTS FOR THE L.E.E.D.® PROGRAM Nucor Corporation is the nation's largest recycler, using almost 21 million tons of scrap steel in 2006 to create new products. Nucor uses Electric Arc Furnace (EAF) technology at all of its steel producing facilities. EAFs use post-consumer scrap steel material for the major feedstock, unlike blast furnace operations which use mined iron ore as the major feedstock. Nucor has prepared the following information to help calculate the recycled content for products being used with "Green Building" applications or for projects in the L.E.E.D. program. Percentages are approximate and based on the total weight of the products. Calculations are based on 2006 scrap steel delivered and finished materials produced. Values do not consider home scrap or scrap generated onsite. Specific product information may be available from facility representatives. #### **RECYCLED CONTENT** - LEED Version 2.2 Credit 4.1 and 4.2 | 2006 Recycled Steel Conte
(% by Total | • • | |--|--------------------------| | Product Group | Average Recycled Content | | Nucor Bar Products | >99% | | Nucor Sheet Products | 70% | | Total Nucor
Steel Combined | 82.3% | | Vulcraft Structural Products | >99% | | Vulcraft Decking | 70% | #### REGIONAL MATERIALS - LEED Version 2.2 Credit 5.1 and 5.2 Nucor tracks the origin of all scrap shipments to our mills. Nucor can approximate the amount of scrap extracted from any project site region. Nucor owns steel and steel products manufacturing facilities throughout the US that are within 500 miles of almost any project site. Please contact your local sales representative if you have questions about regional materials. # BAR MILL GROUP - Darlington SC, Norfolk NE, Jewett TX, Plymouth UT, Auburn NY, Birmingham AL, Kankakee IL, Jackson MS, Seattle WA, Marion OH | 2006 Approxima | 2006 Approximate Recycled Steel Content Of All Nucor Bar Mill Group Products(*) | | | | | | | | | | | |----------------|---|-----------------------------------|---|--|--|--|--|--|--|--|--| | Facility | | Total Alloys and Other Iron Units | Total Post Consumer
Recycled Content | Total Pre-consumer
Recycled Content | | | | | | | | | All | >99% | <1% | 83% | 17% | | | | | | | | The Nucor Bar Mill Group produces rebar, angles, flats, rounds and other miscellaneous shapes. The bar mill group uses recycled scrap steel for over 99% of the feedstock. (*) Studies from 2005 have shown that the recycled steel used for Nucor products consists of approximately 87% post-consumer scrap. The remaining 13% typically consists of pre-consumer scrap generated by manufacturing processes for products made with steel #### Sheet Mill Group - Crawfordsville IN, Hickman AR, Berkeley SC, Decatur AL | 2006 Appro | ximate Recycled St | eel Content Of Nuc | or Sheet Mill Group | Products(*) | |--------------------|---------------------------|--------------------------------------|---|--| | Facility | Total Scrap
Steel Used | Total Alloys and
Other Iron Units | Total Post Consumer
Recycled Content | Total Pre-consumer
Recycled Content | | Crawfordsville, IN | 82% | 18% | 68% | 14% | | Hickman, AR | 70% | 30% | 58% | 12% | | Berkley, SC | 56% | 44% | 46% | 10% | | Decatur, AL | 71% | 29% | 59% | 12% | The Nucor Sheet Mill Group produces hot band, cold rolled, pickled and galvanized products. Nucor Sheet mills use varying amounts of recycled materials depending on metallurgical product demands and market conditions. The combined sheet mill total recycled content is approximately 70%. # <u>VULCRAFT GROUP</u> - Florence SC, Norfolk NE, Brigham City UT, Grapeland TX, St. Joe IN, Fort Payne AL, Chemung NY JOISTS - The bar steel for most Vulcraft joists is obtained from one of the nine Nucor bar mills that use over 99% scrap steel as their feedstock. A breakdown of the recycled content of Nucor bar mill products is detailed above. Vulcraft facilities may receive steel from sources outside of Nucor that may contain lower amounts of recycled steel. Specific product information is available from facility representatives. **DECK** – Steel for decking produced by Vulcraft facilities are typically obtained from one of the four Nucor sheet mills. A breakdown of the recycled content of Nucor sheet mill products is detailed above. Vulcraft deck products contain approximately 70% recycled steel. Additional information is available online through the Steel Recycling Institute at http://www.recycle-steel.org. (*) Studies from 2005 have shown that the recycled steel used for Nucor products consists of approximately 87% post-consumer scrap. The remaining 13% typically consists of pre-consumer scrap generated by manufacturing processes for products made with steel. All figures shown are based on 2006 figures and may vary from year to year. Please contact your local sales representative for current average recycled content for Vulcraft products. #### **ECONOMICAL** #### **HIGH STRENGTH** **DESIGN** - Vulcraft K Series open web steel joists are designed in accordance with specifications of the Steel Joist Institute. #### ACCESSORIES see page 40. # FOR TOP CHORD EXTENSIONS AND EXTENDED ENDS see page 37. #### SJI SPANS TO 60'-0" **PAINT** - Vulcraft joists receive a shop-coat of rust inhibitive primer whose performance characteristics conform to those of the Steel Joist Institute specifications 3.3. **SPECIFICATIONS** see page 10. KCS SERIES JOIST see page 29. | | | MAXIM | UM JOIST SPAC | ING FOR HORIZ | ONTAL BRIDGI | VG | | |-----------|-----------|--------------|---------------|-----------------|--------------|--------------|--------------| | | | | BRIDGIN | IG MATERIAL SI | ZE | | | | | Round Rod | | | aual Leg Angles | 3 | | | | SECTION | 1/2"DIA | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x7/64 | 1-3/4 x 7/64 | 2x 1/8 | 2-1/2 x 5/32 | | NUMBER** | (13mm) | (25mm x 3mm) | (32mm x 3mm) | (38mm x 3mm) | (45mm x 3mm) | (51mm x 3mm) | (64mm x 4mm) | | | r = .13" | r = .25" | r = .25" | r = .30" | r = .35" | r = .40" | r = .50" | | 1 thru 9 | 3'-3" | 5'-0" | 6'-3" | 7'-6" | 8'-7" | 10'-0" | 12'-6" | | | (991mm) | (1524mm) | (1905mm) | (2286mm) | (2616mm) | (3048mm) | (3810mm) | | 10 | 3'-0" | 4'-8" | 6'-3" | 7'-6" | 8'-7" | 10'-0" | 12'-6" | | | (914mm) | (1422mm) | (1905mm) | (2286mm) | (2616mm) | (3048mm) | (3810mm) | | 11 and 12 | 2'-7" | 4'-0" | 5'-8" | 7'-6" | 8'-7" | 10'-0" | 12'-6" | | | (787mm) | (1219mm) | (1727mm) | (2286mm) | (2616mm) | (3048mm) | (3810mm) | ^{*}SECTION NUMBER REFERS TO THE LAST DIGITS OF JOIST DESIGNATION, CONNECTION TO JOIST MUST RESIST 700 POUNDS (3114 N) | | MAVIN | ILIM TOTAL CONCINIO | FOR DIAGONAL BRIDGI | VIC. | |----------------|--------------------------------------|---|--|--| | $\overline{}$ | | | | NG | | | BF | RIDGING ANGLE SIZE | -EQUAL LEG ANGLES | | | JOIST
DEPTH | 1 x 7/64
(25mm x 3mm)
r = .20" | 1 1/4 X7/64
(32mm x 3mm)
r = .25" | 1 1/2 X 7/64
(38mm x 3mm)
r = .30" | 1 3/4 x 7/64
(45mm x 3mm)
r = .35" | | 12
14 | 6'-6" (1981mm)
6'-6" (1981mm) | 8'-3" (2514mm)
8'-3" (2514mm) | 9'-11" (3022mm)
9'-11" (3022mm) | 11'-7" (3530mm)
11'-7" (3530mm) | | 16 | 6'-6" (1981mm) | 8'-2" (2489mm) | 9'-10" (2997mm) | 11'-6" (3505mm) | | 18 | 6'-6" (1981mm) | 8'-2" (2489mm) | 9'-10" (2997mm) | 11'-6" (3505mm) | | 20 | 6'-5" (1955mm) | 8'-2" (2489mm) | 9'-10" (2997mm) | 11'-6" (3505mm) | | 22 | 6'-4" (1930mm) | 8'-1" (2463mm) | 9'-10" (2997mm) | 11'-6" (3505mm) | | 24 | 6'-4" (1930mm) | 8'-1" (2463mm) | 9'-9" (2971mm) | 11'-5" (3479mm) | | 26 | 6'-3" (1905mm) | 8'-0" (2438mm) | 9'-9" (2971mm) | 11'-5" (3479mm) | | 28 | 6'-2" (1879mm) | 8'-0" (2438mm) | 9'-8" (2946mm) | 11'-5" (3479mm) | | 30 | 6'-2" (1879mm) | 7'-11" (2413mm) | 9'-8" (2946mm) | 11'-4" (3454mm) | K-series-all sections numbers use A307 bolt 3/8" (9mm) diameter. See page 16 for number of rows of bridging required. ## BRIDGING FOR STANDING SEAM ROOF SYSTEMS: Generally, standing seam roof systems will not adequately brace the top chords of the joists with standard SJI bridging. We therefore, recommend that when a standing seam roof system is specified, the design professional specifically state that the joist manufacturer is to check the bridging requirements and provide bridging as required to adequately brace the top chord against lateral movement under full loading conditions. #### **UPLIFT BRIDGING:** Where uplift forces due to wind are a design requirement, these forces must be indicated on the structural drawings in terms of **net** uplift in pounds per square foot or pounds per linear foot. When these loads are specified, they must be considered in the design of joists and bridging. As a minimum, a single line of bottom chord bridging must be provided near the first bottom chord panel point, at each end of the joist, whenever uplift is a design consideration.* *See Section 5.11 of the specifications. # STANDARD SPECIFICATIONS ### FOR OPEN WEB STEEL JOISTS, K-SERIES Adopted by the Steel Joist Institute November 4, 1985 Revised to November 10, 2003 - Effective March 01, 2005 SECTION 1. #### SCOPE This specification covers the design, manufacture and use of Open Web Steel Joists, **K**-Series. Load and Resistance Factor Design (LRFD) and Allowable Strength Design (ASD) are included in this specification. SECTION 2. #### **DEFINITION** The term "Open Web Steel Joists **K**-Series," as used herein, refers to open web, parallel chord, load-carrying members suitable for the direct support of floors and roof decks in buildings, utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength* has been attained by cold working. **K**-Series Joists shall be designed in accordance with this specification to support the uniformly distributed loads given in the Standard Load Tables for Open Web Steel Joists, **K**-Series, attached hereto. The KCS Joist is a **K-**Series Joist which is provided to address the problem faced by specifying professionals when trying to select joists to support uniform plus concentrated loads or other non-uniform loads. The design of chord sections for **K**-Series Joists shall be based on a yield strength of 50 ksi (345 MPa). The design of web sections for **K**-Series Joists shall be based on a yield strength of either 36 ksi (250 MPa) or 50 ksi (345 MPa). Steel used for **K**-Series Joists chord or web sections shall have a minimum yield strength determined in accordance with one of the procedures specified in Section 3.2, which is equal to the yield strength assumed in the design. * The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1 "Yield Point", and in paragraph 13.2 "Yield Strength", of ASTM A370, Standard Test
Methods and Definitions for Mechanical Testing of Steel Products, or as specified in paragraph 3.2 of this specification. Standard Specifications and Load Tables, Open Web Steel Joists. **K**-Series. Steel Joist Institute - Copyright, 2005 SECTION 3. #### **MATERIALS** #### 3.1 STEEL The steel used in the manufacture of chord and web sections shall conform to one of the following ASTM Specifications: - · Carbon Structural Steel, ASTM A36/A36M. - High-Strength, Low-Alloy Structural Steel, ASTM A242/A242M. - High-Strength Carbon-Manganese Steel of Structural Quality, ASTM A529/A529M, Grade 50. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M, Grade 42 and 50. - High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 inches (100 mm) Thick, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Corrosion Resistance, ASTM A606. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1008/A1008M - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1011/A1011M or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 3.2. #### 3.2 MECHANICAL PROPERTIES The yield strength used as a basis for the design stresses prescribed in Section 4 shall be either 36 ksi (250 MPa) or 50 ksi (345 MPa). Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A529/A529M, A572/A572M, A588/A588M, whichever specification is applicable on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specifications for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 6 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times the least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. #### **3.3 PAINT** The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15. - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. #### SECTION 4. # DESIGN AND MANUFACTURE #### 4.1 METHOD Joists shall be designed in accordance with these specifications as simply supported, uniformly loaded trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates, use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members that are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. #### **Design Basis:** Designs shall be made according to the provisions in this Specification for either Load and Resistance Factor Design (LRFD) or for Allowable Strength Design (ASD). #### **Load Combinations:** #### LRFD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed for the factored loads based on the factors and load combinations as follows: 1.4D $1.2D + 1.6 (L, or L_r, or S, or R)$ #### ASD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed based on the load combinations as follows: С $D + (L, or L_r, or S, or R)$ #### Where: - D = dead load due to the weight of the structural elements and the permanent features of the structure - L = live load due to occupancy and movable equipment $L_r = roof live load$ S = snow load R = load due to initial rainwater or ice exclusive of the ponding contribution When special loads are specified and the specifying professional does not provide the load combinations, the provisions of ASCE 7, "Minimum Design Loads for Buildings and Other Structures" shall be used for LRFD and ASD load combinations. #### 4.2 DESIGN AND ALLOWABLE STRESSES #### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_{ij} , shall not exceed ϕF_n where, $f_u = required stress$ ksi (MPa) $F_n = nominal stress$ ksi (MPa) ϕ = resistance factor ϕF_n = design stress #### **Design Using Allowable Strength Design (ASD)** Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where, f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor $F_{n}/Ω$ = allowable stress #### Stresses: #### (a) Tension: $\phi_t = 0.90 \text{ (LRFD)} \ \Omega = 1.67 \text{ (ASD)}$ For Chords: $F_v = 50$ ksi (345 MPa) For Webs: $F_v = 50$ ksi (345 MPa), or $F_v = 36$ ksi (250 MPa) Design Stress = $0.9F_v$ (LRFD) (4.2-1) Allowable Stress = $0.6F_v$ (ASD) (4.2-2) #### **(b) Compression:** $\phi_c = 0.90$ (LRFD) $\Omega_c = 1.67$ (ASD) For members with $\frac{\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_v}}$ $$F_{cr} = Q \left[0.658 \left(\frac{QF_y}{F_e} \right) \right] F_y \qquad (4.2-3)$$ For members with $\frac{\ell}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ $$F_{cr} = 0.877F_{e}$$ (4.2-4) Where F_e = Elastic buckling stress determined in accordance with Equation 4.2-5. $$F_{e} = \frac{\pi^{2}E}{\left(\frac{\ell}{r}\right)^{2}}$$ (4.2-5) For hot-rolled sections, "Q" is the full reduction factor for slender compression elements. Design Stress = $0.9F_{cr}$ (LRFD) (4.2-6) Allowable Stress = $0.6F_{cr}$ (ASD) (4.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for web members, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). Use $1.2 \ell/r_x$ for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member; where r_x = member radius of gyration in the plane of the joist. For cold-formed sections the method of calculating the nominal column strength is given in the AISI, *North American Specification for the Design of Cold-Formed Steel Structural Members.* #### (c) Bending: $\phi_b = 0.90 \text{ (LRFD) } \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_v = 50 \text{ ksi } (345 \text{ MPa})$ Design Stress = $$0.9F_v$$ (LRFD) (4.2-8) Allowable Stress = $$0.6F_v$$ (ASD) (4.2-9) For web members of solid round cross section: $F_y = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_y = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $$1.45F_v$$ (LRFD) (4.2-10) Allowable Stress = $$0.95F_v$$ (ASD) (4.2-11) For bearing plates: $F_v = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_v = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $$1.35F_v$$ (LRFD) (4.2-12) Allowable Stress = $$0.90F_{v}$$ (ASD) (4.2-13) #### 4.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratio, ℓ/r , where ℓ is as used in Section 4.2 (b) and r is the corresponding least radius of gyration, shall not exceed the following:
| Top chord interior panels | |---| | Top chord end panels | | Compression members other than top chord200 | | Tension members | #### **4.4 MEMBERS** #### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than $\ell/145$ where ℓ is the spacing in inches (millimeters) between lines of bridging as specified in Section 5.4(c). The top chord shall be considered as stayed laterally by the floor slab or roof deck when attachments are in accordance with the requirements of Section 5.8(e) of these specifications. The top chord shall be designed for only axial compressive stress when the panel length, ℓ , does not exceed 24 inches (609 mm). When the panel length exceeds 24 inches (609 mm), the top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that: #### For LRFD: at the panel point: $$f_{au} + f_{bu} \le 0.9F_{v}$$ (4.4-1) at the mid panel: for $\frac{f_{au}}{\phi_a F_{av}} \ge 0.2$, $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_e}\right)} \right] Q \phi_b F_y \right] \le 1.0 \quad (4.4-2)$$ for $$\frac{f_{au}}{\phi_c F_{cr}}$$ < 0.2, $$\left(\frac{f_{au}}{2\phi_c F_{cr}}\right) + \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_e}\right)}\right] Q \phi_b F_y}\right] \le 1.0 \quad (4.4-3)$$ f_{au} = P_u/A = Required compressive stress, ksi (MPa) P_u = Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_u/S =$ Required bending stress at the location under consideration, ksi (MPa) M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ / r as defined in Section 4.2(b), $C_m = 1 - 0.3 f_{au}/\phi F_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F_e = \frac{\pi^2 E}{\left(\frac{\ell}{r_x}\right)^2}$$, ksi (MPa) Where ℓ is the panel length, in inches (millimeters), as defined in Section 4.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 4.2(b) A = Area of the top chord, in. 2 (mm 2) #### For ASD: at the panel point: $$f_a + f_b \le 0.6F_v$$ (4.4-4) at the mid panel: for $\frac{f_a}{F_a} \ge 0.2$, $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m}f_{b}}{1 - \left(\frac{1.67f_{a}}{F_{e}}\right) \right] QF_{b}} \right] \le 1.0 \quad (4.4-5)$$ for $$\frac{f_a}{F_a}$$ < 0.2, $$\left(\frac{f_a}{2F_a}\right) + \left[\frac{C_m f_b}{\left[1 - \left(\frac{1.67 f_a}{F_e}\right)\right] Q F_b}\right] \le 1.0 \quad (4.4-6)$$ f_a = P/A = Required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = Required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm³) F_a = Allowable axial compressive stress based on ℓ/r as defined in Section 4.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6F_v, ksi (MPa) $C_m = 1 - 0.50 f_a/F_e$ for end panels $C_m = 1 - 0.67 f_a/F_e$ for interior panels #### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Due consideration shall be given to the effect of eccentricity. The effect of combined axial compression and bending may be investigated using the provisions of Section 4.4(a), letting $C_{\rm m}=0.4$ when bending due to eccentricity produces reversed curvature. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of 1/2 of 1.0 percent of the top chord axial force. #### (c) Extended Ends The magnitude and location of the loads to be supported, deflection requirements, and proper bracing of extended top chords or full depth cantilever ends shall be clearly indicated on the structural drawings. #### 4.5 CONNECTIONS #### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. #### (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between weld and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 millimeters) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 millimeters) in any 1 inch (25 millimeters) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. #### (2) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (See Technical Digest #8 - Welding of Open Web Steel Joists.) (3) Weld Inspection by Outside Agencies (See Section 5.12 of these specifications) The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 4.5(a)(1) above. Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. #### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall be capable of withstanding forces due to an ultimate load equal to at least 1.35 times the LRFD, or 2.0 times the ASD load shown in the applicable Standard Load Table. - (2) Shop Splices Splices may occur at any point in chord or web members. Members containing a butt weld splice shall develop an ultimate tensile force of at least 57 ksi (393 MPa) times the full design area of the chord or web. The term "member" shall be defined as all component parts comprising the chord or web, at the point of the splice. #### (c) Eccentricity Members connected at a joint shall have their centroidal axes meet at a point if practical. Otherwise, due consideration shall be given to the effect of eccentricity. In no case shall eccentricity of any web member at a joint exceed 3/4 of the over-all dimension, measured in the plane of the web, of the largest member connected. The eccentricity of any web member shall be the perpendicular distance from the centroidal axis of that web member to the point on the centroidal axis of the chord which is vertically above or below the intersection of the centroidal axes of the web members forming the joint. Ends of joists shall be proportioned to resist bending produced by eccentricity at the support. #### 4.6 CAMBER Joists shall have approximate camber in accordance with the following: **TABLE 4.6-1** | Top C | hord Length | <u>ate Camber</u> | | | | |--------|-------------|-------------------|---------|--|--| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | | | 50'-0" | (15240 mm) | 1" | (25 mm) | | | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | | The specifying professional shall give consideration to coordinating joist camber with adjacent framing. #### 4.7 VERIFICATION OF DESIGN AND MANUFACTURE #### (a) Design Calculations Companies manufacturing **K-**Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. Design data shall be submitted in detail and in the format specified by the Institute. #### (b) Tests of Chord and Web Members Each manufacturer shall, at the time of design review by the Steel Joist Institute or other independent agency, verify by tests that the design, in accordance with Sections 4.1 through 4.5 of this specification, will provide the theoretical strength of critical members. Such tests shall be evaluated considering the actual yield strength of the members of the test joists. Material tests for determining mechanical properties of component members shall be conducted. #### (c) Tests of Joints and Connections Each manufacturer shall verify by shear tests on representative joints of typical joists that connections will meet the provision of Section 4.5(b). Chord and web members may be reinforced for such tests. #### (d) In-Plant Inspections Each manufacturer shall verify their ability to manufacture **K-**Series Joists through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. SECTION 5. #### **APPLICATION** #### 5.1 USAGE These specifications shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 4.1, they shall be investigated and modified if necessary to limit the required stresses to those listed in Section 4.2. **CAUTION:** If a rigid connection of the bottom chord is to be made to the column or other support, it shall be made only after the application of the dead loads. The joist is then no longer simply
supported, and the system must be investigated for continuous frame action by the specifying professional. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the specifying professional. The moment plates shall be furnished by other than the joist manufacturer. #### **5.2 SPAN** The span of a joist shall not exceed 24 times its depth. #### **5.3 END SUPPORTS** #### (a) Masonry and Concrete **K**-Series Joists supported by masonry or concrete are to bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical or lateral forces shall be taken by the specifying professional in the design of the steel bearing plate and the masonry or concrete. The ends of **K**-Series Joists shall extend a distance of not less than 4 inches (102 millimeters) over the masonry or concrete support and be anchored to the steel bearing plate. The plate shall be located not more than 1/2 inch (13 millimeters) from the face of the wall and shall be not less than 6 inches (152 millimeters) wide perpendicular to the length of the joist. The plate is to be designed by the specifying professional and shall be furnished by other than the joist manufacturer. Where it is deemed necessary to bear less than 4 inches (102 millimeters) over the masonry or concrete support, special consideration is to be given to the design of the steel bearing plate and the masonry or concrete by the specifying professional. The joists must bear a minimum of 2 1/2 inches (64 millimeters) on the steel bearing plate. #### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying professional in the design of the steel support. The ends of **K**-Series Joists shall extend a distance of not less than 2 1/2 inches (64 millimeters) over the steel supports. #### 5.4 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types. #### (a) Horizontal Horizontal bridging shall consist of continuous horizontal steel members. Attachments to the joist chords shall be made by welding or mechanical means and shall be capable of resisting a nominal (unfactored) horizontal force of not less than 700 pounds (3114 Newtons). The ratio of unbraced length to least radius of gyration, ℓ/r , of the bridging member shall not exceed 300, where ℓ is the distance in inches (millimeters) between attachments and r is the least radius of gyration of the bridging member. #### (b) Diagonal Diagonal bridging shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bracing members and the connections to the chord of the joists. Connections to the chords of steel joists shall be made by positive mechanical means or by welding. #### (c) Quantity and Spacing The number of rows of top chord bridging shall not be less than as shown in Bridging Tables 5.4-1 and the spacing shall meet the requirements of Section 4.4(a). The number of rows of bottom chord bridging, including bridging required per Section 5.11, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 4.3 and any specified strength requirements. #### (d) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. #### **TABLE 5.4-1** #### NUMBER OF ROWS OF TOP CHORD BRIDGING** Refer to the **K-**Series Load Table and Specification Section 6 for required bolted diagonal bridging. Distances are Joist Span lengths in feet - See "Definition of Span" preceding Load Table. | | 1 | | | | | |----------|------------|-----------------|-----------------|-----------------|-----------------| | *Section | One | Two | Three | Four | Five | | Number | Row | Rows | Rows | Rows | Rows | | #1 | Up thru 16 | Over 16 thru 24 | Over 24 thru 28 | | | | #2 | Up thru 17 | Over 17 thru 25 | Over 25 thru 32 | | | | #3 | Up thru 18 | Over 18 thru 28 | Over 28 thru 38 | Over 38 thru 40 | | | #4 | Up thru 19 | Over 19 thru 28 | Over 28 thru 38 | Over 38 thru 48 | | | #5 | Up thru 19 | Over 19 thru 29 | Over 29 thru 39 | Over 39 thru 50 | Over 50 thru 52 | | #6 | Up thru 19 | Over 19 thru 29 | Over 29 thru 39 | Over 39 thru 51 | Over 51 thru 56 | | #7 | Up thru 20 | Over 20 thru 33 | Over 33 thru 45 | Over 45 thru 58 | Over 58 thru 60 | | #8 | Up thru 20 | Over 20 thru 33 | Over 33 thru 45 | Over 45 thru 58 | Over 58 thru 60 | | #9 | Up thru 20 | Over 20 thru 33 | Over 33 thru 46 | Over 46 thru 59 | Over 59 thru 60 | | #10 | Up thru 20 | Over 20 thru 37 | Over 37 thru 51 | Over 51 thru 60 | | | #11 | Up thru 20 | Over 20 thru 38 | Over 38 thru 53 | Over 53 thru 60 | | | #12 | Up thru 20 | Over 20 thru 39 | Over 39 thru 53 | Over 53 thru 60 | | ^{*} Last digit(s) of joist designation shown in Load Table ** See Section 5.11 for additional bridging required for uplift design. #### 5.5 INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. #### **5.6 END ANCHORAGE** #### (a) Masonry and Concrete Ends of **K-**Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/8 inch (3 millimeters) fillet welds 1 inch (25 millimeters) long, or with two 1/2 inch (13 millimeters) ASTM A307 bolts, or the equivalent. #### (b) Steel Ends of **K-**Series Joists resting on steel supports shall be attached thereto with a minimum of two 1/8 inch (3 millimeters) fillet welds 1 inch (25 millimeters) long, or with two 1/2 inch (13 millimeters) ASTM A307 bolts, or the equivalent. When **K-**Series Joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the specifying professional. #### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces (Refer to Section 5.11 Uplift). #### 5.7 JOIST SPACING Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables. #### 5.8 FLOOR AND ROOF DECKS #### (a) Material Floor and roof decks may consist of cast-in-place or precast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. #### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 millimeters) thick. #### (c) Centering Centering for cast-in-place slabs may be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. #### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. #### (e) Attachments The spacing for slab or deck attachments along the joist top chord shall not exceed 36 inches (914 millimeters), and shall be capable of resisting a nominal (unfactored) lateral force of not less than 300 pounds (1335 Newtons), i.e., 100 plf (1.46 kN/m). #### (f) Wood Nailers Where wood nailers are used, such nailers in conjunction with deck or slab shall be attached to the top chords of the joists in conformance with Section 5.8(e). #### (g) Joist With Standing Seam Roofing The stiffness and strength of standing-seam roof clips varies from one manufacturer to another. Therefore, some roof systems cannot be counted on to provide lateral stability to the joists which support the roof. Sufficient stability must be provided to brace the joists laterally under the full design load. The compression chord must resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). Out-of-plane strength may be achieved by adjusting the bridging spacing and/or increasing the compression chord area, the joist depth, and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_v; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing may not exceed that specified in Section 5.4(c). Horizontal bridging members attached to the compression chords and their anchorage's must be designed for a compressive axial force of 0.0025nP, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord is 0.005P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. #### 5.9 DEFLECTION The deflection due to the design nominal live load shall not exceed the following: Floors: 1/360 of span. Roofs: 1/360 of span where a
plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. * For further reference, refer to Steel Joist Institute Technical Digest #5, "Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. #### 5.10 PONDING* The ponding investigation shall be performed by the specifying professional. * For further reference, refer to Steel Joist Institute Technical Digest #3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and AISC Specifications. #### **5.11 UPLIFT** Where uplift forces due to wind are a design requirement, these forces must be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based upon LRFD or ASD. When these forces are specified, they must be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging must be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration.* * For further reference, refer to Steel Joist Institute Technical Digest #6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". #### **5.12 INSPECTION** Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, they may reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. #### **5.13 PARALLEL CHORD SLOPED JOISTS** The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Standard Load Table capacity shall be the component normal to the joist. #### SECTION 6.* # ERECTION STABILITY AND HANDLING When it is necessary for the erector to climb on the joists, extreme caution must be exercised since unbridged joists may exhibit some degree of instability under the erector's weight. #### (a) Stability Requirements Before an employee is allowed on the steel joist: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with <u>Section 5.6 – End Anchorage</u>. When a bolted seat connection is used for erection purposes, as a minimum, the bolts must be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This may be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - 2) On steel joists that do not require erection bridging as shown by the unshaded area of the Load Tables, only one employee shall be allowed on the steel joist unless all bridging is installed and anchored. - * For a thorough coverage of this topic, refer to SJI Technical Digest #9, "Handling and Erection of Steel Joists and Joist Girders". - 3) Where the span of the steel joist is within the <u>Red shaded</u> <u>area</u> of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joists shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide stability. - 5) In the case of bottom chord bearing joists, the ends of the joist must be restrained laterally per Section 5.4(d). - 6) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with Section 5.6 End Anchorage. #### (b) Landing and Placing Loads - Except as stated in paragraphs 6(b)(3) and 6(b)(4) of this section, no "construction loads"⁽¹⁾ are allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - During the construction period, loads placed on the steel joists shall be distributed so as not to exceed the capacity of the steel joists. - 3) The weight of a bundle of joist bridging shall not exceed a total of 1000 pounds (454 kilograms). The bundle of joist bridging shall be placed on a minimum of 3 steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (0.30 m) of the secured end. - (1) See page 150 for definition of "construction load". A copy of the OSHA Steel Erection Standard §1926.757, Open Web Steel Joists, is included in Appendix E for reference purposes. - 4) No bundle of deck may be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a "qualified person" (2) and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. - g) The edge of the construction load shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. #### (c) Field Welding - All field welding shall be performed in accordance with the contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. #### (d) Handling Care shall be exercised at all times to avoid damage to the joists and accessories. #### (e) Fall Arrest Systems Steel joists <u>shall not</u> be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person" (2). (2) See page 150 for OSHA definition of "qualified person". #### **DEFINITION OF SPAN** (U. S. Customary Units) NOTES: 1) DESIGN LENGTH = SPAN - 0.33 FT. - 2) BEARING LENGTH FOR STEEL SUPPORTS SHALL NOT BE LESS THAN 2 1/2 INCHES; FOR MASONRY AND CONCRETE NOT LESS THAN 4 INCHES. - 3) PARALLEL CHORD JOISTS INSTALLED TO A SLOPE GREATER THAN 1/2 INCH PER FOOT SHALL USE SPAN DEFINED BY THE LENGTH ALONG THE SLOPE. # STANDARD LRFD LOAD TABLE #### **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to November 10, 2003 – Effective March 01, 2005 The black figures in the following table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD K-Series** Steel Joists. The weight of factored DEAD loads, including the joists, must be deducted to determine the factored LIVE load-carrying capacities of the joists. Sloped parallel-chord joists shall use span as defined by the length along the slope. The figures shown in **RED** in this load table are the unfactored nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in **RED** by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. The approximate joist weights per linear foot shown in these tables do not include accessories. The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} =$ RED figure in the Load Table and L = (Span - 0.33) in feet. For the proper handling of concentrated and/or varying loads, see Section 6.1 in the Code of Standard Practice for Steel Joists and Joist Girders. Where the joist span exceeds the unshaded area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at the chords and intersections. # **LRFD** | | | Ba | | | | | | | | JOISTS,
Pounds | | | plf) | | | | |--------------------------|------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|------------------------|-------------------|--------------------------|-------------------|-------------------| | Joist
Designation | 8K1 | 10K1 | 12K1 | 12K3 | 12K5 | 14K1 | 14K3 | 14K4 | 14K6 | 16K2 | 16K3 | 16K4 | 16K5 | 16K6 | 16K7 | 16K9 | | Depth (in.) | 8 | 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Approx. Wt
(lbs./ft.) | 5.1 | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.) | | | | | | | | | | | | | | | | | | 8 | 825
550 | | | | | | | | | | | | | | | | | 9 | 825
550 | | | | |
 | | | | | | | | | | | 10 | 825
480 | 825
550 | | | | | | | | | | | | | | | | 11 | 798
377 | 825
542 | 205 | 205 | 205 | | | | | | | | | | | | | 12 | 666
288 | 825
455 | 825
550 | 825
550 | 825
550 | | | | | | | | | | | | | 13 | 565
225 | 718
363 | 825
510 | 825
510 | 825
510 | 005 | 005 | 005 | 005 | | | | | | | | | 14 | 486
179 | 618
289 | 750
425 | 825
463 | 825
463 | 825
550 | 825
550 | 825
550 | 825
550 | | | | | | | | | 15 | 421
145 | 537
234 | 651
344 | 814
428 | 825
434 | 766
475 | 825
507 | 825
507 | 825
507 | 005 | 005 | 005 | 005 | 005 | 005 | 005 | | 16 | 369
119 | 469
192 | 570
282 | 714
351 | 825
396 | 672
390 | 825
467 | 825
467 | 825
467 | 825
550 | 17 | | 415
159 | 504
234
448 | 630
291
561 | 825
366
760 | 592
324 | 742
404 | 825
443
795 | 825
443 | 768
488 | 825
526 | 825
526 | 825
526 | 825
526 | 825
526
825 | 825
526
825 | | 18 | | 369
134
331 | 197
402 | 245
502 | 317
681 | 528
272
472 | 661
339
592 | 795
397
712 | 825
408
825 | 684
409
612 | 762
456
682 | 825
490
820 | 825
490
825 | 825
490
825 | 490
825 | 490
825 | | 20 | | 113
298 | 167
361 | 207
453 | 269
613 | 230
426 | 287
534 | 336
642 | 383
787 | 347
552 | 386
615 | 452
739 | 455
825 | 455
825 | 455
825 | 455
825 | | 21 | | 97 | 142
327 | 177
409 | 230
555 | 197
385 | 246
483 | 287
582 | 347
712 | 297
499 | 330
556 | 386
670 | 426
754 | 426
822 | 426
825 | 426
825 | | 22 | | | 123
298 | 153
373 | 198
505 | 170
351 | 212
439 | 248
529 | 299
648 | 255
454 | 285
505 | 333
609 | 373
687 | 405
747 | 406
825 | 406
825 | | 23 | | | 106
271 | 1 <mark>32</mark>
340 | 172
462 | 147
321 | 184
402 | 215
483 | 259
592 | 222
415 | 247
462 | 289
556 | 323
627 | 351
682 | 385
760 | 385
825 | | 24 | | | 93
249 | 116
312 | 150
423 | 128
294 | 160
367 | 188
442 | 226
543 | 1 <mark>94</mark>
381 | 216
424 | 252
510 | 282
576 | 307
627 | 339
697 | 363
825 | | | | | 81 | 101 | 132 | 113 | 141 | 165 | 199 | 170 | 189 | 221 | 248 | 269 | 298 | 346 | | 25 | | | | | | 270
100 | 339
124 | 408
145 | 501
175 | 351
150 | 390
167 | 469
195 | 529
219 | 576
238 | 642
263 | 771
311 | | 26 | | | | | | 249
88 | 313
110 | 376
129 | 462
156 | 324
133 | 360
148 | 433
173 | 489
194 | 532
211 | 592
233 | 711
276 | | 27 | | | | | | 231
79 | 289
98 | 349
115 | 427
139 | 300
119 | 334
132 | 402
155 | 453
173 | 493
188 | 549
208 | 658
246 | | 28 | | | | | | 214
70 | 270
88 | 324
103 | 397
124 | 279
106 | 310
118 | 373
138 | 421
155 | 459
168 | 510
186 | 612
220 | | 29 | | | | | | | | | | 259
95 | 289
106 | 348
124 | 391
139 | 427
151 | 475
167 | 570
198 | | 30 | | | | | | | | | | 241
86 | 270
96 | 324
112 | 366
126 | 399
1 <mark>37</mark> | 444
151 | 532
178 | | 31 | | | | | | | | | | 226
78 | 252
87 | 304
101 | 342
114 | 373
124 | 415
137 | 498
161 | | 32 | | | | | | | | | | 213
71 | 237
79 | 285
<mark>92</mark> | 321
103 | 349
112 | 388
124 | 466
147 | # **LRFD** | | | | Ba | sed or | | | | | | | | | | TS, K-S | | | (plf) | | | | | |---------------------------|------------|--------------------|--------------------|------------|------------|------------|------------|------------|-----------------------|------------|------------|------------|--------------------------|------------|------------|------------|--------------------------|------------|--------------------------|------------|-----------------| | Joist
Designation | 18K3 | 18K4 | 18K5 | 18K6 | 18K7 | 18K9 | 18K10 | 20K3 | 20K4 | 20K5 | 20K6 | 20K7 | 20K9 | 20K10 | 22K4 | 22K5 | 22K6 | 22K7 | 22K9 | 22K10 | 22K11 | | Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt.
(lbs./ft.) | 6.6 | 7.2 | 7.7 | 8.5 | 9 | 10.2 | 11.7 | 6.7 | 7.6 | 8.2 | 8.9 | 9.3 | 10.8 | 12.2 | 8 | 8.8 | 9.2 | 9.7 | 11.3 | 12.6 | 13.8 | | Span (ft.) | 18 | 825
550 | | | | | | | | | | | | | | | 19 | 771
494 | 825
523 | 825
523 | 825
523 | 825
523 | 825
523 | 825
523 | | | | | | | | | | | | | | | | 20 | 694
423 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 825
490 | 775
517 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | | | | | | | | | 21 | 630 | 759 | 825 | 825 | 825 | 825 | 825 | 702 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | 22 | 364
573 | 426
690 | 460 777 | 460
825 | 460
825 | 460
825 | 460
825 | 453
639 | 520
771 | 520
825 | 520
825 | 520
825 | 520
825 | 520
825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | 22 | 316
523 | 370
630 | 414
709 | 438
774 | 438
825 | 438
825 | 438
825 | 393
583 | 461
703 | 490
793 | 490
825 | 490
825 | 490
825 | 490
825 | 548
777 | 548
825 | 548
825 | 548
825 | 548
825 | 548
825 | 548
825 | | 23 | 276 | 323 | 362 | 393 | o≥5
418 | 625
418 | 625
418 | 344 | 402 | 451 | 625
468 | o≥5
468 | 625
468 | 468 | 491 | 518 | 518 | 518 | 518 | 518 | 518 | | 24 | 480
242 | 577
284 | 651
318 | 709
345 | 789
382 | 825
396 | 825
396 | 535
302 | 645
353 | 727
396 | 792
430 | 825
448 | 825
448 | 825
448 | 712
431 | 804
483 | 825
495 | 825
495 | 825
495 | 825
495 | 825
495 | | 25 | 441 | 532 | 600 | 652 | 727 | 825 | 825 | 493 | 594 | 669 | 729 | 811 | 825 | 825 | 657 | 739 | 805 | 825 | 825 | 825 | 825 | | | 214 | 250 | 281 | 305 | 337 | 377 | 377 | 266 | 312 | 350 | 380 | 421 | 426 | 426 | 381 | 427 | 464 | 474 | 474 | 474 | 474 | | 26 | 408
190 | 492
222 | 553
249 | 603
271 | 672
299 | 807
354 | 825
361 | 456
236 | 549
277 | 618
310 | 673
337 | 750
373 | 825
405 | 825
405 | 606
338 | 682
379 | 744
411 | 825
454 | 825
454 | 825
454 | 825
454 | | 27 | 378 | 454 | 513
222 | 558 | 622
267 | 747
315 | 825
347 | 421 | 508
247 | 573 | 624 | 694 | 825
389 | 825
389 | 561 | 633 | 688
367 | 768 | 825
432 | 825
432 | 825
432 | | 28 | 169
351 | 198
423 | 477 | 241
519 | 577 | 694 | 822 | 211
391 | 472 | 277
532 | 301
579 | 333
645 | 775 | 825 | 301
522 | 337
588 | 640 | 406
712 | 825 | 825 | 825 | | | 151 | 177 | 199 | 216 | 239 | 282 | 331 | 189 | 221 | 248 | 269 | 298 | 353 | 375 | 270 | 302 | 328 | 364 | 413 | 413 | 413 | | 29 | 327 | 394 | 444 | 483 | 538 | 646 | 766 | 364 | 439 | 495 | 540 | 601 | 723 | 825 | 486 | 547 | 597 | 664 | 798 | 825 | 825 | | 30 | 136
304 | 1 <u>59</u>
367 | 179
414 | 194
451 | 215
502 | 254
603 | 298
715 | 170
340 | 199
411 | 223
462 | 242
504 | 268
561 | 317
675 | 359
799 | 242
453 | 272
511 | 295
556 | 327
619 | 387
745 | 399
825 | 399
825 | | 30 | 123 | 144 | 161 | 175 | 194 | 229 | 269 | 153 | 179 | 201 | 218 | 242 | 286 | 336 | 219 | 245 | 266 | 295 | 349 | 385 | 385 | | 31 | 285 | 343 | 387 | 421 | 469 | 564 | 669 | 318 | 384 | 433 | 471 | 525 | 631 | 748 | 424 | 478 | 520 | 580 | 697 | 825 | 825 | | 22 | 111 | 130 | 146 | 158 | 175 | 207 | 243 | 138 | 162 | 182 | 198 | 219 | 259 | 304 | 198 | 222 | 241 | 267 | 316 | 369 | 369 | | 32 | 267
101 | 322
118 | 363
132 | 396
144 | 441
159 | 529
188 | 627
221 | 298
126 | 360
147 | 406
165 | 442
179 | 492
199 | 592
235 | 702
276 | 397
180 | 448
201 | 489
219 | 544
242 | 654
287 | 775
337 | 823
355 | | 33 | 252 | 303 | 342 | 372 | 414 | 498 | 589 | 280 | 339 | 381 | 415 | 463 | 556 | 660 | 373 | 421 | 459 | 511 | 615 | 729 | 798 | | | 92 | 108 | 121 | 131 | 145 | 171 | 201 | 114 | 134 | 150 | 163 | 181 | 214 | 251 | 164 | 183 | 199 | 221 | 261 | 307 | 334 | | 34 | 237
84 | 285
98 | 321
110 | 349
120 | 390
132 | 468
156 | 555
184 | 264
105 | 318
122 | 358
137 | 391
149 | 435
165 | 523
195 | 621
229 | 352
149 | 397
167 | 432
182 | 481
202 | 579
239 | 687
280 | 774
314 | | 35 | 223
77 | 268
90 | 303
101 | 330
110 | 367
121 | 441
143 | 523
168 | 249
96 | 300
112 | 339
126 | 369
137 | 411
151 | 493
179 | 585
210 | 331
137 | 373
153 | 408
167 | 454
185 | 546
219 | 648
257 | 74° | | 36 | 211 | 253 | 286 | 312 | 348 | 417 | 495 | 235 | 283 | 319 | 348 | 388 | 466 | 553 | 313 | 354 | 385 | 429 | 516 | 612 | 700 | | 37 | 70 | 82 | 92 | 101 | 111 | 132 | 154 | 222 | 268 | 303 | 330 | 139
367 | 164
441 | 193
523 | 126
297 | 334 | 153
364 | 169
406 | 487 | 579 | 660 | | 38 | | | | | | | | 81
211 | 95
255 | 106
286 | 115
312 | 128
348 | 151
418 | 178
496 | 116
280 | 130
316 | 345 | 156
384 | 185
462 | 217
549 | 628 | | 39 | | | | | | | | 74
199 | 87
241 | 98
271 | 106
297 | 118
330 | 1 <mark>39</mark>
397 | 164
471 | 107
267 | 119
300 | 130
327 | 144
364 | 170
438 | 520
520 | 59: | | 40 | | | | | | | | 69
190 | 81
229 | 90
258 | 98
282 | 109
313 | 129
376 | 151
447 | 98
253 | 110
285 | 120
310 | 133
346 | 157
417 | 185
495 | 21
56 | | 41 | | | | | | | | 64 | 75 | 84 | 91 | 101 | 119 | 140 | 91
241 | 102
271 | 111
295 | 123
330 | 146
396 |
171
471 | 19!
53! | | 42 | | | | | | | | | | | | | | | 85
229 | 95
259 | 1 <mark>03</mark>
282 | 114
313 | 1 <mark>35</mark>
378 | 159
448 | 18 ² | | _ | | | | | | | | | | | | | | | 79 | 88 | 96 | 106 | 126 | 148 | 16 | | 43 | | | | | | | | | | | | | | | 219
73 | 247
82 | 268
89 | 300
99 | 360
117 | 427
138 | 489
157 | | 44 | | | | | | | | | | | | | | | 208 | 235 | 256 | 286 | 343 | 408 | 466 | | | | | | | | | | | | | | | | | 68 | 76 | 83 | 92 | 109 | 128 | 14 | | | | Bas | | | | | | WEB STI | | | | oot (plf) | | | | |---------------------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------| | Joist
Designation | 24K4 | 24K5 | 24K6 | 24K7 | 24K8 | 24K9 | 24K10 | 24K12 | 26K5 | 26K6 | 26K7 | 26K8 | 26K9 | 26K10 | 26K12 | | Depth (In.) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Approx. Wt.
(lbs./ft.) | 8.4 | 9.3 | 9.7 | 10.1 | 11.5 | 12.0 | 13.1 | 16.0 | 9.8 | 10.6 | 10.9 | 12.1 | 12.2 | 13.8 | 16.6 | | Span (ft.)
⊥ | | | | | | | | | | | | | | | | | 24 | 780 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | | | | | | | | | 516 | 544 | 544 | 544 | 544 | 544 | 544 | 544 | | | | | | | | | 25 | 718
456 | 810
511 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | | | | | | | | | 26 | 663
405 | 748
453 | 814
493 | 825
499 | 825
499 | 825
499 | 825
499 | 825
499 | 813
535 | 825
541 | 825
541 | 825
541 | 825
541 | 825
541 | 825
541 | | 27 | 615 | 693 | 754 | 825 | 825 | 825 | 825 | 825 | 753 | 820 | 825 | 825 | 825 | 825 | 825 | | | 361 | 404 | 439 | 479 | 479 | 479 | 479 | 479 | 477 | 519 | 522 | 522 | 522 | 522 | 522 | | 28 | 571
323 | 643
362 | 700
393 | 781
436 | 825
456 | 825
456 | 825
456 | 825
456 | 699
427 | 762
464 | 825
501 | 825
501 | 825
501 | 825
501 | 825
501 | | 29 | 531 | 600 | 652 | 727 | 804 | 825 | 825 | 825 | 651 | 709 | 790 | 825 | 825 | 825 | 825 | | 20 | 290 | 325 | 354 | 392 | 429 | 436 | 436 | 436 | 384 | 417 | 463 | 479 | 479 | 479 | 479 | | 30 | 496
262 | 559
293 | 609
319 | 679
353 | 750
387 | 816
419 | 825
422 | 825
422 | 607
346 | 661
377 | 738
417 | 816
457 | 825
459 | 825
459 | 825
459 | | 31 | 465 | 523 | 570 | 636 | 702 | 765 | 825 | 825 | 568 | 619 | 690 | 763 | 825 | 825 | 825 | | 00 | 237 | 266 | 289 | 320 | 350 | 379 | 410 | 410 | 314 | 341 | 378 | 413 | 444 | 444 | 444 | | 32 | 435
215 | 490
241 | 535
262 | 595
290 | 658
318 | 717
344 | 823
393 | 823
393 | 534
285 | 580
309 | 648
343 | 715
375 | 778
407 | 823
431 | 823
431 | | 33 | 409 | 462 | 502 | 559 | 619 | 673 | 798 | 798 | 501 | 546 | 609 | 672 | 732 | 798 | 798 | | | 196 | 220 | 239 | 265 | 289 | 313 | 368 | 368 | 259 | 282 | 312 | 342 | 370 | 404 | 404 | | 34 | 385
179 | 435
201 | 472
218 | 526
242 | 582
264 | 634
286 | 753
337 | 774
344 | 472
237 | 514
257 | 573
285 | 633
312 | 688
338 | 774
378 | 774
378 | | 35 | 363 | 409 | 445 | 496 | 549 | 598 | 709 | 751 | 445 | 484 | 540 | 597 | 649 | 751 | 751 | | 00 | 164 | 184 | 200 | 221 | 242 | 262 | 308 | 324 | 217 | 236 | 261 | 286 | 310 | 356 | 356 | | 36 | 343
150 | 387
169 | 421
183 | 469
203 | 519
222 | 565
241 | 670
283 | 730
306 | 420
199 | 457
216 | 510
240 | 564
263 | 613
284 | 729
334 | 730
334 | | 37 | 324 | 366 | 399 | 444 | 490 | 534 | 634 | 711 | 397 | 433 | 483 | 534 | 580 | 690 | 711 | | 38 | 138
307 | 155
346 | 169
378 | 187
421 | 205
465 | 222 507 | 260
601 | 290
691 | 183
376 | 199
411 | 221
457 | 242
505 | 262
550 | 308
654 | 315
691 | | | 128 | 143 | 156 | 172 | 189 | 204 | 240 | 275 | 169 | 184 | 204 | 223 | 241 | 284 | 299 | | 39 | 292
118 | 328
132 | 358
144 | 399
159 | 441
174 | 480
189 | 570
222 | 673
261 | 357
156 | 390
170 | 433
188 | 480
206 | 522
223 | 619
262 | 673
283 | | 40 | 277 | 312 | 340 | 379 | 420 | 456 | 541 | 657 | 340 | 370 | 412 | 456 | 496 | 589 | 657 | | 41 | 109
264 | 122
297 | 133
324 | 148
361 | 161
399 | 175
435 | 206
516 | 247
640 | 145
322 | 157
352 | 174
393 | 191
433 | 207
472 | 243
561 | 269
640 | | 41 | 101 | 114 | 124 | 137 | 150 | 162 | 191 | 235 | 134 | 146 | 162 | 177 | 192 | 225 | 256 | | 42 | 252 | 283 | 309 | 343 | 379 | 414 | 490 | 625 | 307 | 336 | 373 | 412 | 450 | 534 | 625 | | 43 | 94
240 | 106
270 | 115
294 | 127
328 | 139
363 | 151
394 | 177
468 | 224
609 | 125
294 | 136
319 | 150
357 | 164
394 | 178
429 | 210
508 | 244
610 | | -10 | 88 | 98 | 107 | 118 | 130 | 140 | 165 | 213 | 116 | 126 | 140 | 153 | 166 | 195 | 232 | | 44 | 229 | 258 | 280 | 313 | 346 | 376 | 447 | 580 | 280 | 306 | 340 | 376 | 409 | 486 | 597 | | 45 | 82
219 | 92
246 | 100
268 | 110
298 | 121
330 | 131
360 | 154
427 | 199
555 | 108
268 | 118
291 | 131
325 | 143
360 | 155
391 | 182
465 | 222
583 | | | 76 | 86 | 93 | 103 | 113 | 122 | 144 | 185 | 101 | 110 | 122 | 133 | 145 | 170 | 212 | | 46 | 208
71 | 235
80 | 256
87 | 286
97 | 316
106 | 345
114 | 408
135 | 531
174 | 256
95 | 279
103 | 310
114 | 343
125 | 375
135 | 444
159 | 570
203 | | 47 | 199 | 225 | 246 | 274 | 303 | 330 | 391 | 508 | 246 | 267 | 298 | 328 | 358 | 426 | 553 | | | 67 | 75 | 82 | 90 | 99 | 107 | 126 | 163 | 89 | 96 | 107 | 117 | 127 | 149 | 192 | | 48 | 192
63 | 216
70 | 235
77 | 262
85 | 291
93 | 316
101 | 375
118 | 487
153 | 235
83 | 256
90 | 285
100 | 315
110 | 343
119 | 408
140 | 529
180 | | 49 | | | | | | | | | 225
78 | 246
85 | 274
94 | 303
103 | 330
112 | 391
131 | 508
169 | | 50 | | | | | | | | | 216
73 | 235
80 | 262
89 | 291
97 | 316 | 375
124 | 487
159 | | 51 | | | | | | | | | 208 | 226 | 252 | 279 | 304 | 361 | 469 | | 52 | | | | | | | | | 69
199 | 75
217 | 83
243 | 91
268 | 99
292 | 116
346 | 150
451 | | JZ | | | | | | | | | 65 | 71 | 79 | 86 | 93 | 110 | 142 | | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) | | | | | | | | | | | | | |--|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------------|------------|-------------------|------------| | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt.
(lbs./ft.) | 11.4 | 11.8 | 12.7 | 13.0 | 14.3 | 17.1 | 12.3 | 13.2 | 13.4 | 15.0 | 16.4 | 17.6 | | Span (ft.)
↓ | | | | | | | | | | | | | | 28 | 822
541 | 825
543 | 825
543 | 825
543 | 825
543 | 825
543 | | | | | | | | 29 | 766 | 825 | 825 | 825 | 825 | 825 | | | | | | | | 30 | 486
715 | 522
796 | 522
825 | 522
825 | 522
825 | 522
825 | 825 | 825 | 825 | 825 | 825 | 825 | | | 439 | 486 | 500 | 500 | 500 | 500 | 543 | 543 | 543 | 543 | 543 | 543 | | 31 | 669
397 | 745
440 | 825
480 | 825
480 | 825
480 | 825
480 | 801
508 | 825
520 | 825
520 | 825
520 | 825
520 | 825
520 | | 32 | 627 | 699 | 772 | 823 | 823 | 823 | 751 | 823 | 823 | 823 | 823 | 823 | | 33 | 361
589 | 400
657 | 438
726 | 463
790 | 463
798 | 463
798 | 461
706 | 500
780 | 500
798 | 500
798 | 500
798 | 500
798 | | 34 | 329
555 | 364
618 | 399
684 | 432
744 | 435
774 | 435
774 | 420
664 | 460
735 | 468
774 | 468
774 | 468
774 | 468
774 | | 34 | 300 | 333 | 364
364 | 395 | 410 | 410 | 384 | 420 | 774
441 | 441 | 774
441 | 441 | | 35 | 523
275 | 583
305 | 645
333 | 702
361 | 751
389 | 751
389 | 627
351 | 693
384 | 751
415 | 751
415 | 751
415 | 751
415 | | 36 | 495 | 550 | 609 | 663 | 730 | 730 | 592 | 654 | 712 | 730 | 730 | 730 | | 37 | 252
468 | 280
522 | 306
576 | 332
627 | 366
711 | 366
711 | 323
559 | 353
619 | 383
673 | 392
711 | 392
711 | 392
711 | | | 232 | 257 | 282 | 305 | 344 | 344 | 297 | 325 | 352 | 374 | 374 | 374 | | 38 | 444
214 | 493
237 | 546
260 | 594
282 | 691
325 | 691
325 | 531
274 | 586
300 | 639
325 | 691
353 | 691
353 | 691
353 | | 39 | 420
198 | 469
219 | 519
240 | 564
260 | 670
306 | 673
308 | 504
253 | 556
277 | 606
300 | 673
333 | 673
333 | 673
333 | | 40 | 399 | 445 | 492 | 535 | 636 | 657 | 478 | 529 | 576 | 657 | 657 | 657 | | 41 | 183
379 | 203
424 | 222
468 | 241
510 | 284
606 | 291
640 | 234
454 | 256
502 | 278
547 | 315
640 | 315
640 | 315
640 | | 42 | 170
361 | 189
403 | 206
445 | 224
486 | 263
576 | 277
625 | 217
433 | 238
480 | 258
522 | 300
619 | 300
625 | 300
625 | | | 158 | 175 | 192 | 208 | 245 | 264 | 202 | 221 | 240 | 282 | 284 | 284 | | 43 | 345
147 | 385
163 | 426
179 | 463
194 | 550
228 | 610
252 | 414
188 | 457
206 | 498
223 | 591
263 | 610
270 | 610
270 | | 44 | 330
137 | 367
152 | 406
167 | 442
181 | 525
212 | 597
240 | 394
176 | 436
192 | 475
208 | 564
245 | 597
258 | 597
258 | | 45 | 315 | 351 | 388 | 423 | 501 | 583 |
376 | 417 | 454 | 538 | 583 | 583 | | 46 | 128
301 | 142
336 | 156
372 | 169
405 | 198
480 | 229
570 | 164
361 | 179
399 | 195
435 | 229
516 | 246
570 | 246
570 | | | 120 | 133 | 146 | 158 | 186 | 219 | 153 | 168 | 182 | 214 | 236 | 236 | | 47 | 288
112 | 321
125 | 355
136 | 387
148 | 459
174 | 558
210 | 345
144 | 382
157 | 415
<mark>171</mark> | 493
201 | 558
226 | 558
226 | | 48 | 276
105 | 309
117 | 340
128 | 370
139 | 441
163 | 547
201 | 331
135 | 366
148 | 399
160 | 472
188 | 543
215 | 547
216 | | 49 | 265
99 | 295 | 327 | 355 | 423 | 535 | 318 | 351 | 382 | 454
177 | 520
202 | 535 | | 50 | 255 | 110
283 | 120
313 | 130
342 | 153
405 | 193
525 | 127
304 | 139
337 | 150
367 | 436 | 499 | 207
525 | | 51 | 93
244 | 103
273 | 113
301 | 123
328 | 144
390 | 185
507 | 119
292 | 130
324 | 141
352 | 166
418 | 190
480 | 199
514 | | | 88 | 97 | 106 | 115 | 136 | 175 | 112 | 123 | 133 | 157 | 179 | 192 | | 52 | 235
83 | 262
92 | 289
100 | 315
109 | 375
128 | 487
165 | 282
106 | 312
116 | 339
126 | 402
148 | 462
169 | 504
184 | | 53 | 226
78 | 252
87 | 279
95 | 304
103 | 360
121 | 469
156 | 271
100 | 300
109 | 327
119 | 387
140 | 444
159 | 495
177 | | 54 | 217 | 243 | 268 | 292 | 348 | 451 | 261 | 288 | 313 | 373 | 427 | 486 | | 55 | 74
210 | 82
234 | 89
259 | 97
282 | 114
334 | 147
435 | 94
252 | 103
277 | 112
303 | 132
360 | 150
412 | 170
468 | | | 70 | 77 | 85 | 92 | 108 | 139 | 89 | 98 | 106 | 125 | 142 | 161 | | 56 | 202
66 | 226
73 | 249
80 | 271
87 | 322
102 | 420
132 | 243
84 | 268
92 | 292
100 | 346
118 | 397
135 | 451
153 | | 57 | | | | | | | 234
80 | 259
88 | 282
95 | 334
112 | 384
128 | 435
145 | | 58 | | | | | | | 226
76 | 250
83 | 271
90 | 322
106 | 370
121 | 420
137 | | 59 | | | | | | | 219 | 241 | 262 | 312 | 358 | 406 | | 60 | | | | | | | 72
211 | 79
234 | 86
253 | 101
301 | 115
346 | 130
393 | | | | | | | | | 69 | 75 | 81 | 96 | 109 | 124 | # STANDARD ASD LOAD TABLE # **OPEN WEB STEEL JOISTS, K-SERIES** Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute November 4, 1985 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD K-Series** Steel Joists. The weight of DEAD loads, including the joists, must be deducted to determine the LIVE load-carrying capacities of the joists. Sloped parallel-chord joists shall use span as defined by the length along the slope. The figures shown in **RED** in this load table are the nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in **RED** by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. The approximate joist weights per linear foot shown in these tables do <u>not</u> include accessories. The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} = \textbf{RED}$ figure in the Load Table and L = (Span - 0.33) in feet. For the proper handling of concentrated and/or varying loads, see Section 6.1 in the Code of Standard Practice for Steel Joists and Joist Girders. Where the joist span exceeds the unshaded area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at the chords and intersections. # **ASD** | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) | | | | | | | | | | | | | | | | | |--|------------|------------------------|------------|------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------|-------------------| | Joist
Designation | 8K1 | 10K1 | 12K1 | 12K3 | 12K5 | 14K1 | 14K3 | 14K4 | 14K6 | 16K2 | 16K3 | 16K4 | 16K5 | 16K6 | 16K7 | 16K9 | | Depth (in.) | 8 | 10 | 12 | 12 | 12 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | | Approx. Wt
(lbs./ft.) | 5.1 | 5.0 | 5.0 | 5.7 | 7.1 | 5.2 | 6.0 | 6.7 | 7.7 | 5.5 | 6.3 | 7.0 | 7.5 | 8.1 | 8.6 | 10.0 | | Span (ft.) | | | | | | | | | | | | | | | | | | š | 550
550 | | | | | | | | | | | | | | | | | 9 | 550
550 | | | | | | | | | | | | | | | | | 10 | 550
480 | 550
550 | | | | | | | | | | | | | | | | 11 | 532
377 | 550
542 | | | | | | | | | | | | | | | | 12 | 444
288 | 550
455 | 550
550 | 550
550 | 550
550 | | | | | | | | | | | | | 13 | 377
225 | 479
363 | 550
510 | 550
510 | 550
510 | | | | | | | | | | | | | 14 | 324
179 | 412
289 | 500
425 | 550
463 | 550
463 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 15 | 281
145 | 358
234 | 434
344 | 543
428 | 550
434 | 511
475 | 550
507 | 550
507 | 550
507 | | | | | | | | | 16 | 246
119 | 313
192 | 380
282 | 476
351 | 550
396 | 448
390 | 550
467 | 550
467 | 550
467 | 550
550 | 17 | | 277
159 | 336
234 | 420
291 | 550
366 | 395
324 | 495
404 | 550
443 | 550
443 | 512
488 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | 550
526 | | 18 | | 246
134 | 299
197 | 374
245 | 507
317 | 352
272 | 441
339 | 530
397 | 550
408 | 456
409 | 508
456 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | | 19 | | 221
113 | 268
167 | 335
207 | 454
269 | 315
230 | 395
287 | 475
336 | 550
383 | 408
347 | 455
386 | 547
452 | 550
455 | 550
455 | 550
455 | 550
455 | | 20 | | 199
<mark>97</mark> | 241
142 | 302
177 | 409
230 | 284
197 | 356
246 | 428
287 | 525
347 | 368
297 | 410
330 | 493
386 | 550
426 | 550
426 | 550
426 | 550
426 | | 21 | | | 218
123 | 273
153 | 370
198 | 257
170 | 322
212 | 388
248 | 475
299 | 333
255 | 371
285 | 447
333 | 503
373 | 548
405 | 550
406 | 550
406 | | 22 | | | 199
106 | 249
132 | 337
172 | 234
147 | 293
184 | 353
215 | 432
259 | 303
222 | 337
247 | 406
289 | 458
323 | 498
351 | 550
385 | 550
385 | | 23 | | | 181
93 | 227
116 | 308
150 | 214
128 | 268
160 | 322
188 | 395
226 | 277
194 | 308
216 | 371
252 | 418
282 | 455
307 | 507
339 | 550
363 | | 24 | | | 166
81 | 208
101 | 282
132 | 196
113
180 | 245
141
226 | 295
165
272 | 362
199
334 | 254
170
234 | 283
189
260 | 340
221
313 | 384
248
353 | 418
269
384 | 465
298
428 | 550
346
514 | | | | | | | | 100
106 | 124
209 | 145
251 | 175 | 150 | 167 | 195
289 | 219 | 238
355 | 263 | 311 | | 26
27 | | | | | | 166
88
154 | 110
193 | 251
129
233 | 308
156
285 | 216
133
200 | 240
148
223 | 173
268 | 326
194
302 | 355
211
329 | 395
233
366 | 474
276
439 | | | | | | | | 79 | 98 | 115 | 139 | 119 | 132 | 155 | 173 | 188 | 208 | 246 | | 28 | | | | | | 143
70 | 180
88 | 216
103 | 265
124 | 186
106 | 207
118
193 | 249
138 | 281
155 | 306
168 | 340
186 | 408
220 | | 29 | | | | | | | | | | 173
95 | 106 | 232
124 | 261
139 | 285
151 | 317
167 | 380
198 | | 30 | | | | | | | | | | 161
86 | 180
96 | 216
112 | 244
126 | 266
137 | 296
151 | 355
178 | | 31 | | | | | | | | | | 151
78
142 | 168
87
158 | 203
101
190 | 228
114
214 | 249
124
233 | 277
137
259 | 332
161 | | 32 | | | | | | | | | | 142
71 | 158
79 | 190
<mark>92</mark> | 214
103 | 233
112 | 259
124 | 311
147 | | | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) |-------------------------|--|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|-----------------------|-----------------------|--------------------|------------|------------|-----------------------|------------|------------|------------|------------| | Joist | 18K3 | 18K4 | 18K5 | 18K6 | 18K7 | 18K9 | 18K10 | 20K3 | 20K4 | 20K5 | 20K6 | 20K7 | 20K9 | 20K10 | 22K4 | 22K5 | (PII)
22K6 | 22K7 | 22K9 | 22K10 | 22K11 | | Designation Depth (In.) | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | | Approx. Wt. | 6.6 | 7.2 | 7.7 | 8.5 | 9 | 10.2 | 11.7 | 6.7 | 7.6 | 8.2 | 8.9 | 9.3 | 10.8 | 12.2 | 8 | 8.8 | 9.2 | 9.7 | 11.3 | 12.6 | 13.8 | | Span (ft.) | 18 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | | | | | | | | 19 | 550
514 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | | | | | | | | | 494 | 523 | 523 | 523 | 523 | 523 | 523 | F47 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 20 | 463
423 |
550
490 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | 517
517 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | 550
550 | | | | | | | | | 21 | 420
364 | 506
426 | 550
460 | 550
460 | 550
460 | 550
460 | 550
460 | 468
453 | 550
520 | 550
520 | 550
520 | 550
520 | 550
520 | 550
520 | | | | | | | | | 22 | 382
316 | 460
370 | 518
414 | 550
438 | 550
438 | 550
438 | 550
438 | 426
393 | 514
461 | 550
490 | 550
490 | 550
490 | 550
490 | 550
490 | 550
548 | 23 | 349 | 420 | 473 | 516 | 550 | 550 | 550 | 389 | 469 | 529 | 550 | 550 | 550 | 550 | 518 | 550 | 550 | 550 | 550 | 550 | 550 | | 24 | 276
320 | 323
385 | 362
434 | 393
473 | 418
526 | 418
550 | 418
550 | 344
357 | 402 | 451
485 | 468
528 | 468
550 | 468
550 | 468 550 | 491
475 | 518
536 | 518
550 | 518
550 | 518
550 | 518
550 | 518
550 | | 25 | 242
294 | 284
355 | 318
400 | 345
435 | 382
485 | 396
550 | 396
550 | 302
329 | 353
396 | 396
446 | 430
486 | 448
541 | 550 | 448
550 | 431
438 | 483
493 | 495
537 | 495
550 | 495
550 | 495
550 | 495
550 | | 26 | 214
272 | 250
328 | 281
369 | 305
402 | 337
448 | 377
538 | 377
550 | 266
304 | 312
366 | 350
412 | 380
449 | 421
500 | 426
550 | 426
550 | 381
404 | 427
455 | 464
496 | 474
550 | 474
550 | 474
550 | 474
550 | | | 190 | 222 | 249 | 271 | 299 | 354 | 361 | 236 | 277 | 310 | 337 | 373 | 405 | 405 | 338 | 379 | 411 | 454 | 454 | 454 | 454 | | 27 | 252
169 | 303
198 | 342
222 | 372
241 | 415
267 | 498
315 | 550
347 | 281
211 | 339
247 | 382
277 | 416
301 | 463
333 | 550
389 | 550
389 | 374
301 | 422
337 | 459
367 | 512
406 | 550
432 | 550
432 | 550
432 | | 28 | 234
151 | 282
177 | 318
199 | 346
216 | 385
239 | 463
282 | 548
331 | 261
189 | 315
221 | 355
248 | 386
269 | 430
298 | 517
353 | 550
375 | 348
270 | 392
302 | 427
328 | 475
364 | 550
413 | 550
413 | 550
413 | | 29 | 218
136 | 263
159 | 296
179 | 322
194 | 359
215 | 431
254 | 511
298 | 243
170 | 293
199 | 330
223 | 360
242 | 401
268 | 482
317 | 550
359 | 324
242 | 365
272 | 398
295 | 443
327 | 532
387 | 550
399 | 550
399 | | 30 | 203 | 245 | 276 | 301 | 335 | 402 | 477 | 227 | 274 | 308 | 336 | 374 | 450 | 533 | 302 | 341 | 371 | 413 | 497 | 550 | 550 | | 31 | 123
190 | 144
229 | 161
258 | 175
281 | 194
313 | 229
376 | 269
446 | 153
212 | 179
256 | 201
289 | 218
314 | 242
350 | 286
421 | 336
499 | 219
283 | 245
319 | 266
347 | 295
387 | 349
465 | 385
550 | 385
550 | | 32 | 111
178 | 130
215 | 146
242 | 158
264 | 175
294 | 207
353 | 243
418 | 138
199 | 1 <mark>62</mark> | 182
271 | 198
295 | 219
328 | 259
395 | 304
468 | 198
265 | 222
299 | 241
326 | 267
363 | 316
436 | 369
517 | 369
549 | | | 101 | 118 | 132 | 144 | 159 | 188 | 221 | 126 | 147 | 165 | 179 | 199 | 235 | 276 | 180 | 201 | 219 | 242 | 287 | 337 | 355 | | 33 | 168
92 | 202
108 | 228
121 | 248
131 | 276
145 | 332
171 | 393
201 | 187
114 | 226
134 | 254
150 | 277
163 | 309
181 | 371
214 | 440
251 | 249
164 | 281
183 | 306
199 | 341
221 | 410
261 | 486
307 | 532
334 | | 34 | 158
84 | 190
98 | 214
110 | 233
120 | 260
132 | 312
156 | 370
184 | 176
105 | 212
122 | 239
137 | 261
149 | 290
165 | 349
195 | 414
229 | 235
149 | 265
167 | 288
182 | 321
202 | 386
239 | 458
280 | 516
314 | | 35 | 149
77 | 179
90 | 202
101 | 220
110 | 245
121 | 294
143 | 349
168 | 166
96 | 200
112 | 226
126 | 246
137 | 274
151 | 329
179 | 390
210 | 221
137 | 249
153 | 272
167 | 303
185 | 364
219 | 432
257 | 494
292 | | 36 | 141 | 169 | 191 | 208 | 232 | 278 | 330 | 157 | 189 | 213 | 232 | 259 | 311 | 369 | 209 | 236 | 257 | 286 | 344 | 408 | 467 | | 37 | 70 | 82 | 92 | 101 | 111 | 132 | 154 | 148 | 103
179 | 202 | 125
220 | 139
245 | 164
294 | 193
349 | 126
198 | 223 | 153
243 | 169
271 | 201
325 | 236
386 | 269
442 | | 38 | | | | | | | | 81
141 | 95
170 | 106
191 | 115
208 | 128
232 | 151
279 | 178
331 | 116
187 | 130
211 | 230 | 156
256 | 185
308 | 217
366 | 247
419 | | 39 | | | | | | | | 74
133 | 87
161 | 98
181 | 106
198 | 118
220 | 139
265 | 164
314 | 107
178 | 119
200 | 130
218 | 144
243 | 170
292 | 200
347 | 228
397 | | | | | | | | | | 69 | 81 | 90 | 98 | 109 | 129 | 151 | 98 | 110 | 120 | 133 | 157 | 185 | 211 | | 40 | | | | | | | | 127
64 | 153
75 | 172
84 | 188
91 | 209
101 | 251
119 | 298
140 | 169
91 | 190
102 | 207
111 | 231
123 | 278
146 | 330
171 | 377
195 | | 41 | | | | | | | | | | | | | | | 161
85 | 181
95 | 197
103 | 220
114 | 264
135 | 314
159 | 359
181 | | 42 | | | | | | | | | | | | | | | 153
79 | 173 | 188 | 209 | 252 | 299
148 | 342
168 | | 43 | | | | | | | | | | | | | | | 146 | 165 | 96
179 | 200 | 240 | 285 | 326 | | 44 | | | | | | | | | | | | | | | 73
139 | 82
157 | 89
171 | 99
191 | 117
229 | 138
272 | 157
311 | | | | | | | | | | | | | | | | | 68 | 76 | 83 | 92 | 109 | 128 | 146 | | STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) | | | | | | | | | | | | | | | | |--|------------|------------|------------|------------|------------|------------|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------| | Joist
Designation | 24K4 | 24K5 | 24K6 | 24K7 | 24K8 | 24K9 | 24K10 | 24K12 | 26K5 | 26K6 | 26K7 | 26K8 | 26K9 | 26K10 | 26K12 | | Depth (In.) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | | Approx. Wt.
(lbs./ft.) | 8.4 | 9.3 | 9.7 | 10.1 | 11.5 | 12.0 | 13.1 | 16.0 | 9.8 | 10.6 | 10.9 | 12.1 | 12.2 | 13.8 | 16.6 | | Span (ft.)
↓ | | | | | | | | | | | | | | | | | 24 | 520
516 | 550
544 | | | | | | | | 25 | 479 | 540 | 550 | 550 | 550 | 550 | 550 | 550 | | | | | | | | | 26 | 456
442 | 511
499 | 520
543 | 520
550 | 520
550 | 520
550 | 520
550 | 520
550 | 542 | 550 | 550 | 550 | 550 | 550 | 550 | | 27 | 405
410 | 453
462 | 493
503 | 499
550 | 499
550 | 499
550 | 499
550 | 499
550 | 535
502 | 541
547 | 541
550 | 541
550 | 541
550 | 541
550 | 541
550 | | | 361 | 404 | 439 | 479 | 479 | 479 | 479 | 479 | 477 | 519 | 522 | 522 | 522 | 522 | 522 | | 28 | 381
323 | 429
362 | 467
393 | 521
436 | 550
456 | 550
456 | 550
456 | 550
456 | 466
427 | 508
464 | 550
501 | 550
501 | 550
501 | 550
501 | 550
501 | | 29 | 354 | 400 | 435 | 485 | 536 | 550 | 550 | 550 | 434 | 473 | 527 | 550 | 550 | 550 | 550 | | 20 | 290 | 325 | 354 | 392 | 429 | 436 | 436 | 436 | 384 | 417 | 463 | 479 | 479 | 479 | 479 | | 30 | 331
262 | 373
293 | 406
319 | 453
353 | 500
387 | 544
419 | 550
422 | 550
422 | 405
346 | 441
377 | 492
417 | 544
457 | 550
459 | 550
459 | 550
459 | | 31 | 310
237 | 349
266 | 380
289 | 424
320 | 468
350 | 510
379 | 550
410 | 550
410 | 379
314 | 413
341 | 460
378 | 509
413 | 550
444 | 550
444 | 550
444 | | 32 | 290 | 327 | 357 | 397 | 439 | 478 | 549 | 549 | 356 | 387 | 432 | 477 | 519 | 549 | 549 | | 33 | 215
273 | 241
308 | 262
335 | 290
373 | 318
413 | 344
449 | 393
532 | 393
532 | 285
334 | 309
364 | 343
406 | 375
448 | 407
488 | 431
532 | 431
532 | | | 196 | 220 | 239 | 265 | 289 | 313 | 368 | 368 | 259 | 282 | 312 | 342 | 370 | 404 | 404 | | 34 | 257
179 | 290
201 | 315
218 | 351
242 | 388
264 | 423
286 | 502
337 | 516
344 | 315
237 | 343
257 | 382
285 | 422
312 | 459
338 | 516
378 | 516
378 | | 35 | 242 | 273 | 297 | 331 | 366 | 399 | 473 | 501 | 297 | 323 | 360 | 398 | 433 | 501 | 501 | | 36 | 164
229 | 184
258 | 200
281 | 221
313 | 242
346 | 262
377 | 308
447 | 324
487 | 217
280 | 236
305 | 261
340 | 286
376 | 310
409 | 356
486 | 356
487 | | 37 | 150
216 | 169
244 | 183
266 | 203
296 | 222
327 | 241
356 | 283
423 | 306
474 | 199
265 | 216
289 | 240
322 | 263
356 | 284
387 | 334
460 | 334
474 | | 37 | 138 | 155 | 169 | 187 | 205 | 222 | 260 | 290 | 183 | 199 | 221 | 242 | 262 | 308 | 315 | | 38 | 205
128 | 231
143 | 252
156 | 281
172 | 310
189 | 338
204 | 401
240 | 461
275 | 251
169 | 274
184 | 305
204 | 337
223 | 367
241 | 436
284 | 461
299 | | 39 | 195 | 219 | 239 | 266 | 294 | 320 | 380 | 449 | 238 | 260 | 289 | 320 | 348 | 413 | 449 | | 40 | 118
185 | 132
208 | 144
227 | 159
253 | 174
280 | 189
304 | 222
361 | 261
438 | 156
227 | 170
247 | 188
275 | 206
304 | 223
331 | 262
393 | 283
438 | | | 109 | 122 | 133 | 148 | 161 | 175 | 206 | 247 | 145 | 157 | 174 | 191 | 207 | 243 | 269 | | 41 | 176
101 | 198
114 | 216
124 | 241
137 | 266
150 | 290
162 | 344
191 | 427
235 | 215
134 | 235
146 | 262
162 | 289
177 | 315
192 |
374
225 | 427
256 | | 42 | 168 | 189 | 206 | 229 | 253 | 276 | 327 | 417 | 205 | 224 | 249 | 275 | 300 | 356 | 417 | | 43 | 94
160 | 106
180 | 115
196 | 127
219 | 139
242 | 151
263 | 177
312 | 406 | 125
196 | 136
213 | 150
238 | 164
263 | 178
286 | 210
339 | 244
407 | | 44 | 88
153 | 98
172 | 107
187 | 118
209 | 130
231 | 140
251 | 165
298 | 213
387 | 116
187 | 126
204 | 140
227 | 153
251 | 166
273 | 195
324 | 232
398 | | | 82 | 92 | 100 | 110 | 121 | 131 | 154 | 199 | 108 | 118 | 131 | 143 | 155 | 182 | 222 | | 45 | 146
76 | 164
86 | 179
93 | 199
103 | 220
113 | 240
122 | 285
144 | 370
185 | 179
101 | 194
110 | 217
122 | 240
133 | 261
145 | 310
170 | 389
212 | | 46 | 139
71 | 157
80 | 171
87 | 191
97 | 211
106 | 230
114 | 272
135 | 354
174 | 171
95 | 186
103 | 207
114 | 229
125 | 250
135 | 296
159 | 380
203 | | 47 | 133 | 150 | 164 | 183 | 202 | 220 | 261 | 339 | 164 | 178 | 199 | 219 | 239 | 284 | 369 | | 48 | 67
128 | 75
144 | 82
157 | 90
175 | 99
194 | 107
211 | 1 <mark>26</mark>
250 | 163
325 | 89
157 | 96
171 | 107
190 | 117
210 | 127
229 | 149
272 | 192
353 | | | 63 | 70 | 77 | 85 | 93 | 101 | 118 | 153 | 83 | 90 | 100 | 110 | 119 | 140 | 180 | | 49 | | | | | | | | | 150
78 | 164
85 | 183
94 | 202
103 | 220
112 | 261
131 | 339
169 | | 50 | | | | | | | | | 144
73 | 157
80 | 175
89 | 194
97 | 211
105 | 250
124 | 325
159 | | 51 | | | | | | | | | 139 | 151 | 168 | 186 | 203 | 241 | 313 | | 52 | | | | | | | | | 133 | 75
145 | 83
162 | 91
179 | 99
195 | 116
231 | 150
301 | | | | | | | | | | | 65 | 71 | 79 | 86 | 93 | 110 | 142 | | | | Based o | STANDAF
on a 50 ksi N | | ABLE FOR | | | | | ot (plf) | | | |---|-------------------|-----------------|--------------------------|------------------|----------------|------------|-----------|------------|------------------------|----------------|------------|------------| | Joist
Designation | 28K6 | 28K7 | 28K8 | 28K9 | 28K10 | 28K12 | 30K7 | 30K8 | 30K9 | 30K10 | 30K11 | 30K12 | | Depth (In.) | 28 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 | 30 | 30 | | Approx. Wt.
(lbs./ft.)
Span (ft.) | 11.4 | 11.8 | 12.7 | 13.0 | 14.3 | 17.1 | 12.3 | 13.2 | 13.4 | 15.0 | 16.4 | 17.6 | | Spail (II.)
↓ | | | | | | | | | | | | | | 28 | 548
541 | 550
543 | 550
543 | 550
543 | 550
543 | 550
543 | | | | | | | | 29 | 511
486 | 550
522 | 550
522 | 550
522 | 550
522 | 550
522 | | | | | | | | 30 | 477 | 531 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | | | 439 | 486 | 500 | 500 | 500 | 500 | 543 | 543 | 543 | 543 | 543 | 543 | | 31 | 446 | 497 | 550 | 550 | 550 | 550 | 534 | 550 | 550 | 550 | 550 | 550 | | | 397 | 440 | 480 | 480 | 480 | 480 | 508 | 520 | 520 | 520 | 520 | 520 | | 32 | 418 | 466 | 515 | 549 | 549 | 549 | 501 | 549 | 549 | 549 | 549 | 549 | | 33 | 361 | 400 | 438 | 463 | 463 | 463 | 461 | 500 | 500 | 500 | 500 | 500 | | | 393 | 438 | 484 | 527 | 532 | 532 | 471 | 520 | 532 | 532 | 532 | 532 | | 34 | 329 | 364 | 399 | 432 | 435 | 435 | 420 | 460 | 468 | 468 | 468 | 468 | | | 370 | 412 | 456 | 496 | 516 | 516 | 443 | 490 | 516 | 516 | 516 | 516 | | | 300 | 333 | 364 | 395 | 410 | 410 | 384 | 420 | 441 | 441 | 441 | 441 | | 35 | 349 | 389 | 430 | 468 | 501 | 501 | 418 | 462 | 501 | 501 | 501 | 501 | | | 275 | 305 | 333 | <mark>361</mark> | 389 | 389 | 351 | 384 | 415 | 415 | 415 | 415 | | 36 | 330 | 367 | 406 | 442 | 487 | 487 | 395 | 436 | 475 | 487 | 487 | 487 | | | 252 | 280 | 306 | 332 | 366 | 366 | 323 | 353 | 383 | 392 | 392 | 392 | | 37 | 312 | 348 | 384 | 418 | 474 | 474 | 373 | 413 | 449 | 474 | 474 | 474 | | 38 | 232 | 257 | 282 | 305 | 344 | 344 | 297 | 325 | 352 | 374 | 374 | 374 | | | 296 | 329 | 364 | 396 | 461 | 461 | 354 | 391 | 426 | 461 | 461 | 461 | | 39 | 214 | 237 | 260 | 282 | 325 | 325 | 274 | 300 | 325 | 353 | 353 | 353 | | | 280 | 313 | 346 | 376 | 447 | 449 | 336 | 371 | 404 | 449 | 449 | 449 | | 40 | 198 | 219 | 240 | 260 | 306 | 308 | 253 | 277 | 300 | 333 | 333 | 333 | | | 266 | 297 | 328 | 357 | 424 | 438 | 319 | 353 | 384 | 438 | 438 | 438 | | 41 | 1 <mark>83</mark> | 203 | 222 | 241 | 284 | 291 | 234 | 256 | 278 | 315 | 315 | 315 | | | 253 | 283 | 312 | 340 | 404 | 427 | 303 | 335 | 365 | 427 | 427 | 427 | | | 170 | 189 | 206 | 224 | 263 | 277 | 217 | 238 | 258 | 300 | 300 | 300 | | 42 | 241 | 269 | 297 | 324 | 384 | 417 | 289 | 320 | 348 | 413 | 417 | 417 | | | 158 | 175 | 192 | 208 | 245 | 264 | 202 | 221 | 240 | 282 | 284 | 284 | | 43 | 230 | 257 | 284 | 309 | 367 | 407 | 276 | 305 | 332 | 394 | 407 | 407 | | | 147 | 163 | 179 | 194 | 228 | 252 | 188 | 206 | 223 | 263 | 270 | 270 | | 44 | 220 | 245 | 271 | 295 | 350 | 398 | 263 | 291 | 317 | 376 | 398 | 398 | | | 137 | 152 | 167 | 181 | 212 | 240 | 176 | 192 | 208 | 245 | 258 | 258 | | 45 | 210 | 234 | 259 | 282 | 334 | 389 | 251 | 278 | 303 | 359 | 389 | 389 | | | 128 | 142 | 156 | 169 | 198 | 229 | 164 | 179 | 195 | 229 | 246 | 246 | | 46 | 201 | 224 | 248 | 270 | 320 | 380 | 241 | 266 | 290 | 344 | 380 | 380 | | | 120 | 133 | 146 | 158 | 186 | 219 | 153 | 168 | 182 | 214 | 236 | 236 | | 47 | 192 | 214 | 237 | 258 | 306 | 372 | 230 | 255 | 277 | 329 | 372 | 372 | | 48 | 112 | 125 | 136 | 148 | 174 | 210 | 144 | 157 | 171 | 201 | 226 | 226 | | | 184 | 206 | 227 | 247 | 294 | 365 | 221 | 244 | 266 | 315 | 362 | 365 | | 49 | 105 | 117 | 128 | 139 | 163 | 201 | 135 | 148 | 160 | 188 | 215 | 216 | | | 177 | 197 | 218 | 237 | 282 | 357 | 212 | 234 | 255 | 303 | 347 | 357 | | 50 | 99 | 110 | 120 | 130 | 153 | 193 | 127 | 139 | 150 | 177 | 202 | 207 | | | 170 | 189 | 209 | 228 | 270 | 350 | 203 | 225 | 245 | 291 | 333 | 350 | | | 93 | 103 | 113 | 123 | 144 | 185 | 119 | 130 | 141 | 166 | 190 | 199 | | 51 | 163 | 182 | 201 | 219 | 260 | 338 | 195 | 216 | 235 | 279 | 320 | 343 | | | 88 | 97 | 106 | 115 | 136 | 175 | 112 | 123 | 133 | 157 | 179 | 192 | | 52 | 157 | 175 | 193 | 210 | 250 | 325 | 188 | 208 | 226 | 268 | 308 | 336 | | | <mark>83</mark> | <mark>92</mark> | 100 | 109 | 128 | 165 | 106 | 116 | 126 | 148 | 169 | 184 | | 53 | 151 | 168 | 186 | 203 | 240 | 313 | 181 | 200 | 218 | 258 | 296 | 330 | | | 78 | 87 | 95 | 103 | 121 | 156 | 100 | 109 | 119 | 140 | 159 | 177 | | 54 | 145 | 162
82 | 179 | 195 | 232 | 301
147 | 174 | 192 | 209 | 249 | 285 | 324 | | 55 | 74
140 | 156 | 89
173 | 97
188 | 223 | 290 | 168 | 103
185 | 112
202 | 132
240 | 150
275 | 170
312 | | 56 | 70
135 | 77
151 | 85
166 | 92
181 | 108
215 | 139
280 | 89
162 | 98
179 | 106
195 | 125
231 | 142
265 | 301 | | 57 | 66 | 73 | 80 | 87 | 102 | 132 | 84
156 | 92
173 | 100
188 | 118
223 | 135
256 | 153
290 | | 58 | | | | | | | 80
151 | 88
167 | 95
181 | 112
215 | 128
247 | 145
280 | | 59 | | | | | | | 76
146 | 83
161 | 90
175 | 106
208 | 121
239 | 137
271 | | | | | | | | | 72 | 79 | 86 | 101 | 115 | 130 | | 60 | | | | | | | 141
69 | 156
75 | 169
<mark>81</mark> | 201
96 | 231
109 | 262
124 | #### **OPEN WEB STEEL JOISTS, K-SERIES** #### **KCS JOISTS** The KCS Joists: - Provide a versatile K-Series Joist that can be easily specified to support uniform loads plus concentrated and non-uniform loads. - Eliminate many repetitive load diagrams required on contract documents and allow some flexibility of load locations. KCS joists are designed in accordance with the Standard Specification for $\mathbf{K}\text{-}Series$ Joists. Standard **K-**Series Joists are designed for simple span uniform loading which results in a parabolic moment diagram for chord forces and a linearly sloped shear diagram for web forces. When non-uniform and/or concentrated loads are encountered the shear and moment diagrams required may be shaped quite differently and may not be covered by the shear and moment design envelopes of a standard **K-**Series Joist. KCS Joist chords are designed for a flat positive moment envelope. The moment capacity is constant at all interior panels. The top chord end panel is designed for axial load based on the force in the first tension web, which is based on the specified shear. A uniform load of 825 plf (12030 N/m) LRFD or 550 plf (8020 N/m) ASD is used to check end panel bending. The web forces are determined based on a flat shear envelope. All webs are designed for a vertical shear equal to the specified shear capacity. Furthermore, all webs (except the first tension web which remains in tension under all simple span gravity loads) will be designed for 100% stress reversal. Both LRFD and ASD KCS Joist load tables list the shear and moment capacity of each joist. The selection of a KCS Joist requires the specifying professional to calculate the maximum moment and shear imposed and select the appropriate KCS Joist. If a KCS Joist cannot be selected from the load table or if any uniform load exceeds 825 plf (12030 N/m) LRFD or 550 plf (8020 N/m) ASD or if the maximum concentrated load exceeds the shear capacity of the joist, use double KCS Joists or select an LH-Series Joist. For the LH-Series Joist, supply a load diagram. When net uplift loads, end moments or other external horizontal loads are a design consideration; these loads shall be provided to the joist manufacturer by the specifying professional. As is the case with standard **K-**, **LH-** and **DLH-**Series Joists, chord bending due to concentrated loads must be addressed. In the case of concentrated loads, the specifying professional shall handle them in one of two ways: 1) specify on the structural drawings that an extra web must be field applied at all concentrated loads not occurring at joist panel points, or 2)
provide exact locations of all concentrated loads for which the joist manufacturer shall provide necessary reinforcement. Please reference SJI Technical Digest #9 "Handling and Erection of Steel Joists and Joist Girders" for further information. <u>NOTE:</u> In the following examples joist selection is based on minimum depth and minimum weight (plf, kg/m). Other selections may be more suitable for specific job conditions. #### LRFD EXAMPLES #### **EXAMPLE 1** #### **LRFD FACTORED LOADS** M = 938 in.-kip (105.9 kN-m) $R_1 = 8400 \text{ lbs } (37.37 \text{ kN}), R_B = 7500 \text{ lbs } (33.36 \text{ kN})$ Select a 22KCS3, M = 987 in.-kip (111.5 kN-m) R = 9900 lbs (44.0 kN) Bridging section no. 9 for L = 40 ft. (12192 mm) Use 22K9 to determine bridging and stability requirements. Since a standard KCS Joist can be selected from the load table a load diagram is not required. #### **EXAMPLE 2** #### **LRFD FACTORED LOADS** M = 664 in.-kip (75.03 kN-m) $R_L = 7500 \text{ lbs } (33.36 \text{ kN}), R_R = 8010 \text{ lbs } (35.63 \text{ kN})$ Select a 22KCS2, M = 732 in.-kip (82.64 kN-m) R = 8850 lbs (39.3 kN) Bridging section no. 6 for L = 30 ft. (9144 mm) Use 22K6 to determine bridging and stability requirements. Since the maximum *factored* uniform load of 645 plf (9413 N/m) (405 plf (5911 N/m) + 240 plf (3503 N/m) does not exceed the maximum KCS Joist uniform load of 825 plf (12030 N/m) and a standard KCS Joist can be selected from the load table, a load diagram is not required. #### **EXAMPLE 3** M = 4365 in.-kip (493.2 kN-m) $R_L = R_R = 21000 \text{ lbs } (93.41 \text{ kN})$ EXCEEDS CAPACITY OF 30KCS5 (MAXIMUM KCS JOIST AND EXCEEDS MAXIMUM *FACTORED* UNIFORM LOAD OF 825 plf (12040 N/m). **OPTION A:** Use double joists each having a minimum moment capacity M = 2183 in.-kip (246.65 kN-m) and shear capacity R = 10500 lbs (46.71 kN) and a uniform load of 600 plf (8756 N/m). Select two 28KCS5, M = 2556 in.-kip (288.7 kN-m), R = 13800 lbs (61.3 kN). Bridging section no. 12 for L = 55 ft. (16764 mm) Use 28K12 to determine bridging and stability requirements. **OPTION B:** Select an **LH-**Series Joist. Calculate an equivalent uniform load based on the maximum moment or shear: $$W_M = \frac{8M}{L^2} = 962 \text{ plf } (14.04 \text{ kN/m})$$ $$W_V = \frac{2R}{I} = 764 \text{ plf (11.14 kN/m)}$$ Use 962 plf (14.04 kN/m) From the **LH-**Series LRFD Load Table select a 32LH13, W = 1035 plf (15.10 kN/m) for a 55 ft. (16764 mm) clear span. Specify a 32LH13SP and present a load diagram on the structural drawings with the following note: JOIST MANUFACTURER SHALL DESIGN FOR THE LOADING SHOWN IN THE LOAD DIAGRAM. #### **ASD EXAMPLES** #### **EXAMPLE 1** M = 625 in.-kip (70.6 kN-m) $R_1 = 5600 \text{ lbs } (24.9 \text{ kN}), R_B = 5000 \text{ lbs } (22.2 \text{ kN})$ Select a 22KCS3, M = 658 in.-kip (74.3 kN-m) R = 6600 lbs (29.3 kN) Bridging section no. 9 for L = 40 ft. (12192 mm) Use 22K9 to determine bridging and stability requirements. Since a standard KCS Joist can be selected from the load table a load diagram is not required. #### **EXAMPLE 2** M = 443 in.-kip (50.1 kN-m) R_L = 5000 lbs (22.24 kN), R_R = 5340 lbs (23.75 kN) Select a 22KCS2, M = 488 in.-kip (55.1 kN-m) R = 5900 lbs (26.2 kN) Bridging section no. 6 for L = 30 ft. (9144 mm) Use 22K6 to determine bridging and stability requirements. Since the maximum uniform load of 430 plf [6275 N/m) (270 plf (3940 N/m) + 160 plf (2335 N/m)] does not exceed the maximum KCS Joist uniform load of 550 plf (8020 N/m) and a standard KCS Joist can be selected from the load table, a load diagram is not required. #### **EXAMPLE 3** M = 2910 in.-kip (328.8 kN-m) $$R_L = R_R = 14000 \text{ lbs } (62.28 \text{ kN})$$ EXCEEDS CAPACITY OF 30KCS5 (MAXIMUM KCS JOIST) AND EXCEEDS MAXIMUM UNIFORM LOAD OF 550 plf (8027 N/m). **OPTION A:** Use double joists each having a minimum moment capacity M = 1455 in.-kip (164.4 kN-m) and shear capacity R = 7000 lbs (31.14 kN) and a uniform load of 400 plf (5838 N/m). Select two 28KCS5, M = 1704 in.-kip (192.5 kN-m), R = 9200 lbs (40.9 kN) Bridging section no. 12 for L = 55 ft. (16764 mm) Use 28K12 to determine bridging and stability requirements. **OPTION B:** Select an **LH-**Series Joist. Calculate an equivalent uniform load based on the maximum moment or shear: $$W_M = \frac{8M}{1^2} = 641 \text{ plf } (9.35 \text{ kN/m})$$ $$W_V = \frac{2R}{I} = 509 \text{ plf } (7.43 \text{ kN/m})$$ Use 641 plf (9.35 kN/m) From the **LH-**Series ASD Load Table select a 32LH13, W = $690 \, \text{plf} (10.06 \, \text{kN/m})$ for a 55 ft. ($16764 \, \text{mm}$) clear span. Specify a **32LH13SP** and present a load diagram on the structural drawings with the following note: JOIST MANUFACTURER SHALL DESIGN FOR THE LOADING SHOWN IN THE LOAD DIAGRAM. # STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS Based on a 50 ksi Maximum Yield Strength | | Dased on a 50 kst Maximum Field Strength | | | | | | | | | | | | | |-------|--|-------------------|-----------------------------------|-----------------------------|---------------------------------|--------------------------------------|--|--|--|--|--|--|--| | DESIG | DIST
INATION | DEPTH
(inches) | MOMENT
CAPACITY
(inch-kips) | SHEAR
CAPACITY*
(lbs) | APPROX.
WEIGHT**
(lbs/ft) | GROSS
MOMENT OF
INERTIA (in.4) | BRIDGING
TABLE
SECTION
NUMBER | | | | | | | | 10 | KCS1 | 10 | 258 | 3000 | 6.0 | 29 | 1 | | | | | | | | | KCS2 | 10 | 337 | 3750 | 7.5 | 37 | 1 | | | | | | | | 10 | KCS3 | 10 | 444 | 4500 | 10.0 | 47 | 1 | | | | | | | | 12 | KCS1 | 12 | 313 | 3600 | 6.0 | 43 | 3 | | | | | | | | 12 | KCS2 | 12 | 411 | 4500 | 8.0 | 55 | 5 | | | | | | | | 12 | KCS3 | 12 | 543 | 5250 | 10.0 | 71 | 5 | | | | | | | | 14 | KCS1 | 14 | 370 | 4350 | 6.5 | 59 | 4 | | | | | | | | 14 | KCS2 | 14 | 486 | 5100 | 8.0 | 77 | 6 | | | | | | | | 14 | KCS3 | 14 | 642 | 5850 | 10.0 | 99 | 6 | | | | | | | | | KCS2 | 16 | 523 | 6000 | 8.5 | 99 | 6 | | | | | | | | | KCS3 | 16 | 705 | 7200 | 10.5 | 128 | 9 | | | | | | | | 16 | KCS4 | 16 | 1080 | 7950 | 14.5 | 192 | 9 | | | | | | | | | KCS5 | 16 | 1401 | 8700 | 18.0 | 245 | 9 | | | | | | | | 18 | KCS2 | 18 | 592 | 7050 | 9.0 | 127 | 6 | | | | | | | | 18 | KCS3 | 18 | 798 | 7800 | 11.0 | 164 | 9 | | | | | | | | | KCS4 | 18 | 1225 | 8550 | 15.0 | 247 | 10 | | | | | | | | 18 | KCS5 | 18 | 1593 | 9300 | 18.5 | 316 | 10 | | | | | | | | 20 | KCS2 | 20 | 663 | 7800 | 9.5 | 159 | 6 | | | | | | | | | KCS3 | 20 | 892 | 9000 | 11.5 | 205 | 9 | | | | | | | | | KCS4 | 20 | 1371 | 11850 | 16.5 | 308 | 10 | | | | | | | | | KCS5 | 20 | 1786 | 12600 | 20.0 | 396 | 10 | | | | | | | | | KCS2 | 22 | 732 | 8850 | 10.0 | 194 | 6 | | | | | | | | | KCS3 | 22 | 987 | 9900 | 12.5 | 251 | 9 | | | | | | | | | KCS4 | 22 | 1518 | 11850 | 16.5 | 377 | 11 | | | | | | | | | KCS5 | 22 | 1978 | 12900 | 20.5 | 485 | 11 | | | | | | | | | KCS2 | 24 | 801 | 9450 | 10.0 | 232 | 6 | | | | | | | | | KCS3 | 24 | 1080 | 10800 | 12.5 | 301 | 9 | | | | | | | | | KCS4 | 24 | 1662 | 12600 | 16.5 | 453 | 12 | | | | | | | | | KCS5 | 24 | 2172 | 13350 | 20.5 | 584 | 12 | | | | | | | | | KCS2 | 26 | 870 | 9900 | 10.0 | 274 | 6 | | | | | | | | | KCS3 | 26 | 1174 | 11700 | 12.5 | 355 | 9 | | | | | | | | | KCS4 | 26 | 1809 | 12750 | 16.5 | 536 | 12 | | | | | | | | | KCS5 | 26 | 2364 | 13800 | 20.5 | 691 | 12 | | | | | | | | | KCS2 | 28 | 939 | 10350 | 10.5 | 320 | 6 | | | | | | | | | KCS3 | 28 | 1269 | 12000 | 12.5 | 414 | 9 | | | | | | | | | KCS4 | 28 | 1954 | 12750 | 16.5 | 626 | 12 | | | | | | | | | KCS5 | 28 | 2556 | 13800 | 20.5 | 808 | 12 | | | | | | | | | KCS3 | 30 | 1362 | 12000 | 13.0 | 478 | 9 | | | | | | | | | KCS4 | 30 | 2100 | 12750 | 16.5 | 722 | 12 | | | | | | | | 30 | KCS5 | 30 | 2749 | 13800 | 21.0 | 934 | 12 | | | | | | | ^{*}MAXIMUM UNIFORMLY DISTRIBUTED LOAD CAPACITY IS 825 PLF AND SINGLE CONCENTRATED LOAD CANNOT EXCEED SHEAR CAPACITY ^{**}DOES NOT INCLUDE ACCESSORIES # **ASD** # STANDARD LOAD TABLE FOR KCS OPEN WEB STEEL JOISTS Based on a 50 ksi Maximum Yield Strength | Buscu on a 50 kg maximum ricia direngin | | | | | | | | | | | | | |---|-------------------|------------------------------------|-----------------------------|---------------------------------|--------------------------------------|--|--|--|--|--|--|--| | JOIST
DESIGNATION | DEPTH
(inches) | MOMENT
CAPACITY*
(inch-kips) | SHEAR
CAPACITY*
(lbs) | APPROX.
WEIGHT**
(lbs/ft) | GROSS
MOMENT OF
INERTIA (in.4) | BRIDGING
TABLE
SECTION
NUMBER | | | | | | | | 10KCS1 | 10 | 172 | 2000 | 6.0 | 29 | 1 | | | | | | | | 10KCS2 | 10 | 225 | 2500 | 7.5 | 37 | 1 | | | | | | | | 10KCS3 | 10 | 296 | 3000 | 10.0 | 47 | 1 | | | | | | | | 12KCS1 | 12 | 209 | 2400 | 6.0 | 43 | 3 | | | | | | | | 12KCS2 | 12 | 274 | 3000 | 8.0 | 55 | 5 | | | | | | | | 12KCS3 | 12 | 362 | 3500 | 10.0 | 71 | 5 | | | | | | | | 14KCS1 | 14 | 247 | 2900 | 6.5 | 59 | 4 | | | | | | | | 14KCS2 | 14 | 324 | 3400 | 8.0 | 77 | 6 | | | | | | | | 14KCS3 | 14 | 428 | 3900 | 10.0 | 99 | 6 | | | | | | | | 16KCS2 | 16 | 349 | 4000 | 8.5 | 99 | 6 | | | | | | | | 16KCS3 | 16 | 470 | 4800 | 10.5 | 128 | 9 | | | | | | | | 16KCS4 | 16 | 720 | 5300 | 14.5 | 192 | 9 | | | | | | | | 16KCS5 | 16 | 934 | 5800 | 18.0 | 245 | 9 | | | | | | | | 18KCS2 | 18 | 395 | 4700 | 9.0 | 127 | 6 | | | | | | | | 18KCS3 | 18 | 532 | 5200 | 11.0 | 164 | 9 | | | | | | | | 18KCS4 | 18 | 817 | 5700 | 15.0 | 247 | 10 | | | | | | | | 18KCS5 | 18 | 1062 | 6200 | 18.5 | 316 | 10 | | | | | | | | 20KCS2 | 20 | 442 | 5200 | 9.5 | 159 | 6 | | | | | | | | 20KCS3 | 20 | 595 | 6000 | 11.5 | 205 | 9 | | | | | | | | 20KCS4 | 20 | 914 | 7900 | 16.5 | 308 | 10 | | | | | | | | 20KCS5 | 20 | 1191 | 8400 | 20.0 | 396 | 10 | | | | | | | | 22KCS2 | 22 | 488 | 5900 | 10.0 | 194 | 6 | | | | | | | | 22KCS3 | 22 | 658 | 6600 | 12.5 | 251 | 9 | | | | | | | |
22KCS4 | 22 | 1012 | 7900 | 16.5 | 377 | 11 | | | | | | | | 22KCS5 | 22 | 1319 | 8600 | 20.5 | 485 | 11 | | | | | | | | 24KCS2 | 24 | 534 | 6300 | 10.0 | 232 | 6 | | | | | | | | 24KCS3 | 24 | 720 | 7200 | 12.5 | 301 | 9 | | | | | | | | 24KCS4 | 24 | 1108 | 8400 | 16.5 | 453 | 12 | | | | | | | | 24KCS5 | 24 | 1448 | 8900 | 20.5 | 584 | 12 | | | | | | | | 26KCS2 | 26 | 580 | 6600 | 10.0 | 274 | 6 | | | | | | | | 26KCS3 | 26 | 783 | 7800 | 12.5 | 355 | 9 | | | | | | | | 26KCS4 | 26 | 1206 | 8500 | 16.5 | 536 | 12 | | | | | | | | 26KCS5 | 26 | 1576 | 9200 | 20.5 | 691 | 12 | | | | | | | | 28KCS2 | 28 | 626 | 6900 | 10.5 | 320 | 6 | | | | | | | | 28KCS3 | 28 | 846 | 8000 | 12.5 | 414 | 9 | | | | | | | | 28KCS4 | 28 | 1303 | 8500 | 16.5 | 626 | 12 | | | | | | | | 28KCS5 | 28 | 1704 | 9200 | 20.5 | 808 | 12 | | | | | | | | 30KCS3 | 30 | 908 | 8000 | 13.0 | 478 | 9 | | | | | | | | 30KCS4 | 30 | 1400 | 8500 | 16.5 | 722 | 12 | | | | | | | | 30KCS5 | 30 | 1833 | 9200 | 21.0 | 934 | 12 | | | | | | | ^{*}MAXIMUM UNIFORMLY DISTRIBUTED LOAD CAPACITY IS 550 PLF AND SINGLE CONCENTRATED LOAD CANNOT EXCEED SHEAR CAPACITY ^{**}DOES NOT INCLUDE ACCESSORIES # **NOTES** ### JOIST SUBSTITUTES K SERIES Joist substitutes are 2.5 inch (64 mm) deep sections intended for use in very short spans (less than 8 feet (2.4 m) where Open Web Steel Joists are impractical. They are commonly specified to span over hallways and short spans in skewed bays. Joist substitutes are fabricated from material conforming to Steel Joist Institute Specifications. Full lateral support to the compressive flange is provided by attachments to the deck. Caution must be exercised during erection since joist substitutes exhibit some degree of instability. After erection and before loads of any description are placed on the joist substitutes, the ends must be attached to the supports per SJI **K**-Series specifications and the deck installed and attached to the top flange. Tables below list uniform loads based on LRFD and ASD methods of design and listed in U.S. Customary units: ## LRFD | 2.5 Inch K-Series Joist Substitutes | | | | | | | | | | | | |---|------------|------------------------|------------|--|--|--|--|--|--|--|--| | Based on a Maximum Yield Strength of 50 ksi | | | | | | | | | | | | | Designation 2.5K1 2.5K2 2.5K3 | | | | | | | | | | | | | Span (ft-in) Pounds per Linear Foot | | | | | | | | | | | | | 4'-0" | 825 | 825 | 825 | | | | | | | | | | 5'-0" | 825
338 | 825
465 | 825 | | | | | | | | | | 6'-0" | 561
189 | 779
260 | 825
354 | | | | | | | | | | 7'-0" | 405
116 | 563
160 | 810
218 | | | | | | | | | | 8'-0" | 306
76 | 426
105 | 612
143 | | | | | | | | | | 9'-0" — 333 480
— 73 99 | | | | | | | | | | | | | 10'-0" | | 267
<mark>52</mark> | 386
71 | | | | | | | | | # **ASD** | 2.5 Inch I | K-Series | Joist Sul | ostitutes | | | | | | | | | |-------------------------------|-------------------------------------|--------------|-------------------------|--|--|--|--|--|--|--|--| | Based on a | Maximum Y | ield Strengt | h of 50 ksi | | | | | | | | | | Designation 2.5K1 2.5K2 2.5K3 | | | | | | | | | | | | | Span (ft-in) | Span (ft-in) Pounds per Linear Foot | | | | | | | | | | | | 4'-0" | 4'-0" 550 550 550 | | | | | | | | | | | | 5'-0" | 550
338 | 550
465 | 550 | | | | | | | | | | 6'-0" | 374
189 | 519
260 | 550
<mark>354</mark> | | | | | | | | | | 7'-0" | 270
116 | 375
160 | 540
218 | | | | | | | | | | 8'-0" | 204
76 | 284
105 | 408
143 | | | | | | | | | | 9'-0" | _ | 222
73 | 320
99 | | | | | | | | | | 10'-0" | _ | 178
52 | 257
<mark>71</mark> | | | | | | | | | The figures shown in red are the uniform live loads which produce an approximate deflection of 1/360 of the span. Live loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in **red** by 1.5. In no case shall the total load capacity of the joist substitute be exceeded. ### **FABRICATION** Depth Maximum Length Minimum Length 3 ft Contact your local Vulcraft plant for sloped or pitched seat information. ### 2.5K SERIES SIMPLE SPAN INFORMATION | 2.5K TYPE | 2.5K1 | 2.5K2 | 2.5K3 | |-------------------|-------|-------|-------| | S in ³ | 0.62 | 0.84 | 1.2 | | I in⁴ | 0.78 | 1.1 | 1.5 | | WT lbs/ft | 3.0 | 4.2 | 6.4 | NOTE: 2.5K SERIES NOT U.L. APPROVED. NOTE: 2.5K SERIES NOT U.L. APPROVED. # **LRFD** | LOAD TABLE FOR LOOSE OUTRIGGERS | | | | | | | | | | | | | |---------------------------------|--|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--| | | TOTAL ALLOWABLE LOAD FOR UNSUPPORTED CANTILEVER PLF* | | | | | | | | | | | | | OUTRIGGER | SPAN ft-in | | | | | | | | | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | 6'-6" | | | | 2.5K1 | 825 | 749 | 519 | 381 | 293 | 231 | 188 | 155 | _ | _ | | | | 2.5K2 | 825 | 325 825 698 512 392 311 251 207 174 — | | | | | | | | | | | | 2.5K3 | 825 | 825 | 825 | 740 | 566 | 447 | 362 | 299 | 252 | 215 | | | | LOAD TABLE FOR LOOSE OUTRIGGERS | | | | | | | | | | | | | | |---------------------------------|--|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--| | | TOTAL ALLOWABLE LOAD FOR UNSUPPORTED CANTILEVER PLF* | | | | | | | | | | | | | | OUTRIGGER | | SPAN ft-in | | | | | | | | | | | | | TYPE | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | 6'-6" | | | | | 2.5K1 | 550 | 499 | 346 | 254 | 195 | 154 | 125 | 103 | _ | _ | | | | | 2.5K2 | 550 | 50 550 465 341 261 207 167 138 116 — | | | | | | | | | | | | | 2.5K3 | 550 | 550 | 550 | 493 | 377 | 298 | 241 | 199 | 168 | 143 | | | | ^{*}Serviceability requirements must be checked by the specifying professional. ### TOP CHORD EXTENSIONSAND EXTENDED ENDS, K-SERIES Joist extensions are commonly furnished to support a variety of overhang conditions. The two types are pictured below. The first is the TOP CHORD EXTENSION or "S" TYPE, which has only the top chord angles extended. The second is the EXTENDED END or "R" TYPE in which the standard 2 1/2 in., (64 mm) end bearing depth is maintained over the entire length of the extension. The "S" TYPE extension is so designated because of its Simple nature whereas the "R" TYPE involves Reinforcing the top chord angles. The **specifying professional** should be aware that an "S" TYPE is more economical and should be specified whenever possible. The following load tables for **K**-Series TOP CHORD EXTENSIONS and EXTENDED ENDS for **LRFD** and **ASD** methods of design and listed in U.S. Customary and Metric units, have been developed as an aid to the **specifying professional**. The black number in the tables is the maximum allowable uniform load in pounds per linear foot (kilo-Newton/Meter). The **red** number is the uniform load which will produce an approximate deflection of L1/240, where L1 is the length of the extension. The load tables are applicable for uniform loads only. If there are concentrated loads and/or non-uniform loads, a loading diagram must be provided by the **specifying professional** on the structural drawings. In cases where it is not possible to meet specific job requirements with a 2 1/2 in. (64 mm) deep "R" type extension (refer to "S" and "I" values in the Extended End Load Table), the depth of the extension must be increased to provide greater load-carrying capacity. If the loading diagram for any condition is not shown, the joist manufacturer will design the extension to support the uniform load indicated in the **K-**Series Joist Load Table for the span of the joist. When TOP CHORD EXTENSIONS or EXTENDED ENDS are specified, the allowable deflection and the bracing requirements must be considered by the **specifying professional**. It should be noted that an "R" TYPE extension must be specified when building details dictate a 2 1/2 in., (64 mm) depth at the end of the extension. In the absence of specific instructions, the joist manufacturer may provide either type. ### TOP CHORD EXTENSION ### EXTENDED END W = Uniform Load L1 = Length of Extension SPAN = See K-Series Load Table for definition of Span ### TOP CHORD EXTENSION LOAD TABLE (S TYPE) Based on a Maximum Yield Strength of 50 ksi **Pounds per Linear Foot** "S" "|" LENGTH (L1) (in.³) **TYPE** (in.4) 0'-6" 1'-0" 1'-6" 2'-0" 2'-6" 3'-0" 3'-6" 4'-0" 4'-6" S1 0.099 0.088 0.127 0.138 S2 0.144 S3 0.156 0.160 0.172 S4 S5 0.176 0.188 S6 0.192 0.204 S7 0.241 0.306 S8 0.266 0.332 <u>11</u>7 S9 0.288 0.358 S10 0.380 0.544 S11 0.438 0.622 S12 0.494 0.696 | | TOP CHORD EXTENSION LOAD TABLE (R TYPE) Based on a Maximum Yield Strength of 50 ksi Pounds per Linear Foot | | | | | | | | | | | | | | |------|--|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------------| | | "S" | " " | | | | | | LENG. | TH (L1) | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 825 | 825 | 825 | 825 | 825 | 669 | 498 | 385 | 307 | 250 | 208 | 175 | | | | | 550 | 550 | 550 | 550 | 396 | 236 | 152 | 103 | 73 | 54 | 41 | 32 | | R2 | 0.923 | 1.157 | 825 | 825 | 825 | 825 | 825 | 690 | 514 | 399 | 318 | 259 | 216 | 181 | | | | | 550 | 550 | 550 | 550 | 409 | 244 | 157 | 107 | 76 | 56 | 42 | 33 | | R3 | 1.039 | 1.299 | 825 | 825 | 825 | 825 | 825 | 777 | 579 | 448 | 358 | 292 | 243 | 205 | | | | | 550 | 550 | 550 | 550 | 459 | 274 | 176 | 120 | 85 | 63 | 47 | 37 | | R4 | 1.147 | 1.433 | 825 | 825 | 825 | 825 | 825 | 825 | 639 | 495 | 394 |
321 | 267 | 225 | | | | | 550 | 550 | 550 | 550 | 507 | 302 | 195 | 132 | 94 | 69 | 52 | 41 | | R5 | 1.249 | 1.561 | 825 | 825 | 825 | 825 | 825 | 825 | 696 | 538 | 429 | 349 | 291 | 246 | | | | | 550 | 550 | 550 | 550 | 550 | 329 | 212 | 144 | 103 | 75 | 57 | 44 | | R6 | 1.352 | 1.690 | 825 | 825 | 825 | 825 | 825 | 825 | 753 | 583 | 465 | 379 | 315 | 265 | | | | | 550 | 550 | 550 | 550 | 550 | 357 | 230 | 156 | 111 | 82 | 62 | 48 | | R7 | 1.422 | 1.802 | 825 | 825 | 825 | 825 | 825 | 825 | 792 | 613 | 489 | 399 | 331 | 279 | | | | | 550 | 550 | 550 | 550 | 550 | 380 | 245 | 167 | 119 | 87 | 66 | 51 | | R8 | 1.558 | 1.948 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 672 | 535 | 436 | 363 | 306 | | | | | 550 | 550 | 550 | 550 | 550 | 411 | 265 | 180 | 128 | 94 | 71 | 55 | | R9 | 1.673 | 2.091 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 721 | 576 | 469 | 390 | 328 | | | | | 550 | 550 | 550 | 550 | 550 | 442 | 284 | 194 | 138 | 101 | 77 | 59 | | R10 | 1.931 | 2.414 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 664 | 541 | 450 | 379 | | | | | 550 | 550 | 550 | 550 | 550 | 510 | 328 | 224 | 159 | 117 | 89 | 69 | | R11 | 2.183 | 2.729 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 825 | 751 | 612 | 508 | 430 | | | | | 550 | 550 | 550 | 550 | 550 | 550 | 371 | 253 | 180 | 132 | 100 | 78 | | R12 | 2.413 | 3.016 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | 825
550 | 825
410 | 825
279 | 825
199 | 676
146 | 562
111 | 475
<mark>86</mark> | | | TOP CHORD EXTENSION LOAD TABLE (S TYPE) Based on a Maximum Yield Strength of 50 ksi Pounds per Linear Foot | | | | | | | | | | | | | | |------|--|---------------------|------------|-------------|------------|------------|------------|------------|-----------|-----------|-----------|--|--|--| | | "S" | " " | | LENGTH (L1) | | | | | | | | | | | | TYPE | (in. ³) | (in. ⁴) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | | | | | S1 | 0.099 | 0.088 | 550
550 | 363
363 | 178
127 | 105
58 | | | | | | | | | | S2 | 0.127 | 0.138 | 550
550 | 467
422 | 229
200 | 135
91 | | | | | | | | | | S3 | 0.144 | 0.156 | 550
550 | 529
510 | 259
226 | 153
104 | | | | | | | | | | S4 | 0.160 | 0.172 | 550
550 | 550
550 | 288
249 | 170
113 | 112
60 | | | | | | | | | S5 | 0.176 | 0.188 | 550
550 | 550
550 | 316
272 | 187
124 | 123
66 | | | | | | | | | S6 | 0.192 | 0.204 | 550
550 | 550
550 | 345
295 | 204
134 | 135
72 | | | | | | | | | S7 | 0.241 | 0.306 | 550
550 | 550
550 | 433
433 | 256
201 | 169
108 | 120
64 | | | | | | | | S8 | 0.266 | 0.332 | 550
550 | 550
550 | 478
481 | 283
219 | 187
117 | 132
70 | | | | | | | | S9 | 0.288 | 0.358 | 550
550 | 550
550 | 518
518 | 306
236 | 202
126 | 143
75 | 107
48 | | | | | | | S10 | 0.380 | 0.544 | 550
550 | 550
550 | 550
550 | 404
359 | 267
192 | 189
115 | 141
74 | 109
50 | | | | | | S11 | 0.438 | 0.622 | 550
550 | 550
550 | 550
550 | 466
410 | 307
220 | 218
131 | 162
84 | 126
57 | 100
41 | | | | | S12 | 0.494 | 0.696 | 550
550 | 550
550 | 550
550 | 526
459 | 347
246 | 246
147 | 183
94 | 142
64 | 113
45 | | | | | | TOP CHORD EXTENSION LOAD TABLE (R TYPE) Based on a Maximum Yield Strength of 50 ksi Pounds per Linear Foot | | | | | | | | | | | | | | |------|--|--------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | "S" | " " | | LENGTH (L1) | | | | | | | | | | | | TYPE | (in. ³) | (in.4) | 0'-6" | 1'-0" | 1'-6" | 2'-0" | 2'-6" | 3'-0" | 3'-6" | 4'-0" | 4'-6" | 5'-0" | 5'-6" | 6'-0" | | R1 | 0.895 | 1.119 | 550 | 550 | 550 | 550 | 550 | 446 | 332 | 257 | 205 | 167 | 139 | 117 | | | | | 550 | 550 | 550 | 550 | 396 | 236 | 152 | 103 | 73 | 54 | 41 | 32 | | R2 | 0.923 | 1.157 | 550 | 550 | 550 | 550 | 550 | 460 | 343 | 266 | 212 | 173 | 144 | 121 | | | | | 550 | 550 | 550 | 550 | 409 | 244 | 157 | 107 | 76 | 56 | 42 | 33 | | R3 | 1.039 | 1.299 | 550 | 550 | 550 | 550 | 550 | 518 | 386 | 299 | 239 | 195 | 162 | 137 | | | | | 550 | 550 | 550 | 550 | 459 | 274 | 176 | 120 | 85 | 63 | 47 | 37 | | R4 | 1.147 | 1.433 | 550 | 550 | 550 | 550 | 550 | 550 | 426 | 330 | 263 | 214 | 178 | 150 | | | | | 550 | 550 | 550 | 550 | 507 | 302 | 195 | 132 | 94 | 69 | 52 | 41 | | R5 | 1.249 | 1.561 | 550 | 550 | 550 | 550 | 550 | 550 | 464 | 359 | 286 | 233 | 194 | 164 | | | | | 550 | 550 | 550 | 550 | 550 | 329 | 212 | 144 | 103 | 75 | 57 | 44 | | R6 | 1.352 | 1.690 | 550 | 550 | 550 | 550 | 550 | 550 | 502 | 389 | 310 | 253 | 210 | 177 | | | | | 550 | 550 | 550 | 550 | 550 | 357 | 230 | 156 | 111 | 82 | 62 | 48 | | R7 | 1.422 | 1.802 | 550 | 550 | 550 | 550 | 550 | 550 | 528 | 409 | 326 | 266 | 221 | 186 | | | | | 550 | 550 | 550 | 550 | 550 | 380 | 245 | 167 | 119 | 87 | 66 | 51 | | R8 | 1.558 | 1.948 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 448 | 357 | 291 | 242 | 204 | | | | | 550 | 550 | 550 | 550 | 550 | 411 | 265 | 180 | 128 | 94 | 71 | 55 | | R9 | 1.673 | 2.091 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 481 | 384 | 313 | 260 | 219 | | | | | 550 | 550 | 550 | 550 | 550 | 442 | 284 | 194 | 138 | 101 | 77 | 59 | | R10 | 1.931 | 2.414 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 443 | 361 | 300 | 253 | | | | | 550 | 550 | 550 | 550 | 550 | 510 | 328 | 224 | 159 | 117 | 89 | 69 | | R11 | 2.183 | 2.729 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 501 | 408 | 339 | 287 | | | | | 550 | 550 | 550 | 550 | 550 | 550 | 371 | 253 | 180 | 132 | 100 | 78 | | R12 | 2.413 | 3.016 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 550 | 451 | 375 | 317 | | | | | 550 | 550 | 550 | 550 | 550 | 550 | 410 | 279 | 199 | 146 | 111 | 86 | ### K SERIES OPEN WEB STEEL JOISTS ANCHORAGE TO STEEL SEE SJI SPECIFICATION 5.3 (b) AND 5.6 ANCHORAGE TO MASONARY SEE SJI SPECIFICATION 5.3 (a) AND 5.6 BOLTED CONNECTION* TYPICALLY REQUIRED AT COLUMNS CEILING EXTENSION **BOTTOM CHORD STRUT** HEADERS Note: If header does not bear at a Joist Panel Point add extra web in field as shown. EW or Panel Point by Vulcraft ### **MAXIMUM DUCT OPENING SIZES (K SERIES)*** | JOIST
DEPTH | ROUND | SQUARE | RECTANGLE | | | | | | | | |----------------|--------------------------------------|---------------------|--------------|--|--|--|--|--|--|--| | 8 inches | 5 inches | 4x4 inches | 3x8 inches | | | | | | | | | 10 inches | 10 inches 6 inches 5x5 inches | | | | | | | | | | | 12 inches | 4x9 inches | | | | | | | | | | | 14 inches | 5x9 inches | | | | | | | | | | | 16 inches | 9 inches | 7 1/2x 71/2 inches | 6X10 inches | | | | | | | | | 18 inches | 11 inches | 8x8 inches | 7x11 inches | | | | | | | | | 20 inches | 11 inches | 9x9 inches | 7x12 inches | | | | | | | | | 22 inches | 12 inches | 9 1/2 x9 1/2 inches | 8x12 inches | | | | | | | | | 24 inches | 13 inches | 10x10 inches | 8x13 inches | | | | | | | | | 26 inches | 151/2 inches | 12x12 inches | 9x18 inches | | | | | | | | | 28 inches | 16 inches | 13x13 inches | 9x18 inches | | | | | | | | | 30 inches | 17 inches | 14x14 inches | 10x18 inches | | | | | | | | | | *FOR LH SERIES CONSULT WITH VULCRAFT | | | | | | | | | | SPECIFYING PROFESSIONAL \underline{MUST} INDICATE ON $\underline{STRUCTURAL}$ DRAWINGS SIZE AND LOCATION OF ANY DUCT THAT IS TO PASS THRU JOIST. ### K SERIES OPEN WEB STEEL JOISTS HORIZONTAL BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. BY OTHERS TYPE BAC WELD HORIZONTAL BRIDGING TYPE BAC WELD **EXPANSION BOLTS** BRIDGING ANCHORS SEE SJI SPECIFICATION 5.5 AND 6. NOTE: DO NOT WELD BRIDGING TO JOIST WEB MEMBERS. DO NOT HANG ANY MECHANICAL, ELECTRICAL, ETC. FROM BRIDGING. WELDED CROSS BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. HORIZONTAL BRIDGING SHALL BE USED IN SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL. BOLTED CROSS BRIDGING SEE SJI SPECIFICATION 5.5 AND 6. - (a) Horizontal Bridging units shall be used in the space adjacent to the wall to allow for proper deflection of the joist nearest the wall. - (b) For required bolt size refer to bridging table on page 136. NOTE: Clip configuration may vary from that shown. FULL DEPTH CANTILEVER END SEE SJI SPECIFICATION 5.4 (d) AND 5.5 FOR BRIDGING REQUIREMENTS. SQUARE END SEE SJI SPECIFICATION 5.4 (d) AND 5.5 FOR BRIDGING REQUIREMENTS. DEEP BEARINGS CONFIGURATION MAY VARY ### K SERIES OPEN WEB STEEL JOISTS ### **SLOPED SEAT REQUIREMENTS FOR SLOPES 3/8:12 AND GREATER** LOW END HIGH END | | High End | |----------|-------------| | | Recommended | | Slope | Seat | | Rate | Depth | | | d | | 3/8:12 | 3 1/2" | | 1/2:12 | 3 1/2" | | 1:12 | 4" | | 1 1/2:12 | 4" | | 2:12 | 4" | | 2 1/2:12 | 4 1/2" | | 3:12 | 4 1/2" | | 3 1/2:12 | 5" | | 4:12 | 5" | | 4 1/2:12 | 5" | | 5:12 | 5 1/2" | | 5 1/2:12 | 5 1/2" | | 6:12 | 5 1/2" | IF OVER 6:12 SEE BELOW ### NOTES: - (1) Depths shown are the minimums required for fabrication of sloped bearing seats. Depths may vary depending on actual bearing conditions. - (2) $d = 5/8 + 2.5 / \cos \theta + 4 \tan \theta$ - (3) Clearance must be checked at outer edge of support as shown in detail B. Increase bearing depth as required to permit passage of 2 1/2" deep extension. - (4) If extension depth greater than 2 1/2" is required (see details B and D) increase bearing depths accordingly. - (5) If slope is 1/4:12 or less sloped seats are not required. # BARTLE HALL CONVENTION CENTER Kansas City, Missouri Architect-Engineer: HNTB Corp. General Contractor: Watson General Contractors, Inc. Steel Fabricator: Havens Steel, Inc. Steel Erector: Danny's Construction Co., Inc. ### BRIDGING REQUIREMENTS FOR K-SERIES JOISTS Number of Rows of Bridging*** Distances are Span Lengths (see "Definition of Span" on page
20.) | Section | | ABILITY SPANS . Section 6) | | | | | | |----------|--|--|-------------|----------------------|----------------------|----------------------|----------------------| | Numbers* | Depth | Span Less Than** | 1 Row | 2 Rows | 3 Rows | 4 Rows | 5 Rows | | 1 | 8
10
12
14 | 17'
21'
23'
27' | Up thru 16' | Over 16'
thru 24' | Over 24'
thru 28' | | | | 2 | 16 | 29' | Up thru 17' | Over 17' thru 25' | Over25'thru32' | | | | 3 | 12
14
16
18
20 | 25'
29'
30'
31'
32' | Up thru 18' | Over 18'
thru 28' | Over 28'
thru 38' | Over 38'
thru 40' | | | 4 | 14
16
18
20
22
24 | 29'
32'
32'
34'
34'
36' | Up thru 19' | Over 19'
thru 28' | Over 28'
thru 38' | Over 38'
thru 48' | | | 5 | 12
16
18
20
22
24
26 | 25'
32'
33'
34'
35'
38'
38' | Up thru 19' | Over 19'
thru 29' | Over 29'
thru 39' | Over 39'
thru 50' | Over 50'
thru 52' | | 6 | 14
16
18
20
22
24
26
28 | 29'
33'
35'
36'
36'
39'
39'
40' | Up thru 19' | Over 19'
thru 29' | Over 29'
thru 39' | Over 39'
thru 51' | Over 51'
thru 56' | | 7 | 16
18
20
22
24
26
28
30 | 33'
37'
39'
40'
43'
43'
43'
44' | Up thru 20' | Over 20'
thru 33' | Over 33'
thru 45' | Over 45'
thru 58' | Over 58'
thru 60' | | 8 | 24
26
28
30 | 43'
44'
44'
45' | Up thru 20' | Over 20'
thru 33' | Over 33'
thru 45' | Over 45'
thru 58' | Over 58'
thru 60' | | 9 | 16
18
20
22
24
26
28
30 | 33'
37'
39'
40'
44'
44'
45'
45' | Up thru 20' | Over 20'
thru 33' | Over 33'
thru 46' | Over 46'
thru 59' | Over 59'
thru 60' | | 10 | 18
20
22
24
26
28
30 | 37'
41'
45'
49'
49'
49'
50' | Up thru 20' | Over 20'
thru 37' | Over 37'
thru 51' | Over 51'
thru 60' | | | 11 | 22
30 | 45'
52' | Up thru 20' | Over 20'
thru 38' | Over 38'
thru 53' | Over 53'
thru 60' | | | 12 | 24
26
28
30 | 49'
53'
53'
54' | Up thru 20' | Over 20'
thru 39' | Over 39'
thru 53' | Over 53'
thru 60' | | ^{*} Last digit(s) of joist designation. ** For spans EQUAL TO OR EXCEEDING that shown above, one of the required rows, nearest mid-span, must be bolted diagonal type. Bolted diagonal bridging shall be installed and connected BEFORE releasing the hoisting lines. Refer to Specification Section 6 for handling and erection requirements. *** See SJI Specifications 5.11 for uplift requirement, page 18. | Maxim | K-Series Joist Maximum Joist Spacing for Horizontal Bridging | | | | | | | | | | | | |----------------------|--|-------|--------------|---------|--------|--------|--|--|--|--|--|--| | | | *Brid | ging Materia | al Size | | | | | | | | | | Equal Leg Angles | | | | | | | | | | | | | | Section
Numbers** | | | | | | | | | | | | | | 1 thru 9 | 5'-0" | 6'-3" | 7'-6" | 8'-7" | 10'-0" | 12'-6" | | | | | | | | 10 | 10 4'-8" 6'-3" 7'-6" 8'-7" 10'-0" 12'-6" | | | | | | | | | | | | | 11 & 12 | 11 & 12 4'-0" 5'-8" 7'-6" 8'-7" 10'-0" 12'-6" | | | | | | | | | | | | ^{*} Connection to Joist must resist 700 pounds. ^{**} Refer to last digit(s) of Joist Designation. | K, LH & DLH Series Joist Maximum Joist Spacing for Diagonal Bridging | | | | | | |--|---------|------------|---------------|------------|---------| | | | Bridgir | ng Angle Size | | | | Joist | 1x7/64 | 1-1/4x7/64 | 1-1/2x7/64 | 1-3/4x7/64 | 2x1/8 | | Depth | r =.20" | r =.25" | r =.30" | r =.35" | r =.40" | | 12 | 6'-6" | 8'-3" | 9'-11" | 11'-7" | | | 14 | 6'-6" | 8'-3" | 9'-11" | 11'-7" | | | 16 | 6'-6" | 8'-2" | 9'-10" | 11'-6" | | | 18 | 6'-6" | 8'-2" | 9'-10" | 11'-6" | | | 20 | 6'-5" | 8'-2" | 9'-10" | 11'-6" | | | 22 | 6'-4" | 8'-1" | 9'-10" | 11'-6" | | | 24 | 6'-4" | 8'-1" | 9'-9" | 11'-5" | | | 26 | 6'-3" | 8'-0" | 9'-9" | 11'-5" | | | 28 | 6'-2" | 8'-0" | 9'-8" | 11'-5" | | | 30 | 6'-2" | 7'-11" | 9'-8" | 11'-4" | | | 32 | 6'-1" | 7'-10" | 9'-7" | 11'-4" | 13'-0" | | 36 | | 7'-9" | 9'-6" | 11'-3" | 12'-11" | | 40 | | 7'-7" | 9'-5" | 11'-2" | 12'-10" | | 44 | | 7'-5" | 9'-3" | 11'-0" | 12'-9" | | 48 | | 7'-3" | 9'-2" | 10'-11" | 12'-8" | | 52 | | | 9'-0" | 10'-9" | 12'-7" | | 56 | | | 8'-10" | 10'-8" | 12'-5" | | 60 | | | 8'-7" | 10'-6" | 12'-4" | | 64 | | | 8'-5" | 10'-4" | 12'-2" | | 68 | | | 8'-2" | 10'-2" | 12'-0" | | 72 | | | 8'-0" | 10'-0" | 11'-10" | | LH-Series Joist* Maximum Joist Spacing for Horizontal Bridging | | | | | | | |--|---------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------| | | Bridging Angle Size | | | | | | | Section
Numbers** | 1x7/64
r =.20" | 1-1/4x7/64
r =.25" | 1-1/2x7/64
r =.30" | 1-3/4x7/64
r =.35" | 2x1/8
r =.40" | 2-1/2x5/32
r =.50" | | | 41 | -1 -" | -1 -1 | -1 -1 | | 4.51.411 | | Bridging Angle Size | | | | | | | |----------------------|-------------------|-----------------------|-----------------------|-----------------------|------------------|-----------------------| | Section
Numbers** | 1x7/64
r =.20" | 1-1/4x7/64
r =.25" | 1-1/2x7/64
r =.30" | 1-3/4x7/64
r =.35" | 2x1/8
r =.40" | 2-1/2x5/32
r =.50" | | 02,03,04 | 4'-7" | 6'-3" | 7'-6" | 8'-9" | 10'-0" | 12'-4" | | 05,06 | 4'-1" | 5'-9" | 7'-6" | 8'-9" | 10'-0" | 12'-4" | | 07,08 | 3'-9" | 5'-1" | 6'-8" | 8'-6" | 10'-0" | 12'-4" | | 09,10 | | 4'-6" | 6'-0" | 7'-8" | 10'-0" | 12'-4" | | 11,12 | | 4'-1" | 5'-5" | 6'-10" | 8'-11" | 12'-4" | | 13,14 | | 3'-9" | 4'-11" | 6'-3" | 8'-2" | 12'-4" | | 15,16 | | | 4'-3" | 5'-5" | 7'-1" | 11'-0" | | 17 | | | 4'-0" | 5'-1" | 6'-8" | 10'-5" | ^{*} Connection to Joist must resist 700 pounds. # Bridging Requirements for LH-Series and DLH-Series Joists*** | Erection Stability Spans (SJI Spec. Section 105) | | | | | |--|------------|--------------------|--|--| | Depth | Section | Spans less than ** | | | | | Number | | | | | 18 | 02 | 33' | | | | | 03 thru 09 | 37' | | | | 20 | 02 | 33' | | | | | 03 | 38' | | | | | 04 thru 10 | 41' | | | | 24 | 03 | 35' | | | | | 04 | 39' | | | | | 05 | 40' | | | | | 06 | 45' | | | | | 07 thru 11 | 49' | | | | 28 | 05 | 42' | | | | | 06 | 46' | | | | | 07 thru 08 | 54' | | | | | 09 thru 13 | 57' | | | | 32 | 06 thru 07 | 47' | | | | | 08 | 55' | | | | | 09 thru 15 | 60' | | | | 36 | 07 thru 08 | 47' | | | | | 09 | 57' | | | | | 10 thru 15 | 60' | | | | 40 | 08 thru 09 | 47' | | | | | 10 thru 17 | 60' | | | | 44 | 09 | 52' | | | | | 10 thru 17 | 60' | | | | 48 | 10 thru 17 | 60' | | | ^{*} Last two digits of joist designation. ^{***} All DLH-Series JOISTS REQUIRE ALL BRIDGING ROWS TO BE BOLTED DIAGONAL TYPE. | Bridging Spacing | | | | | |------------------|--------------|----------------|--|--| | LH-DLH | Minimum Bolt | Max.Spacing of | | | | Sect. Number* | Diameter** | Bridging Lines | | | | 02,03,04 | 3/8" | 11'-0" | | | | 05,06 | 3/8" | 12'-0" | | | | 07,08 | 3/8" | 13'-0" | | | | 09,10 | 3/8" | 14'-0" | | | | 11,12 | 3/8" | 16'-0" | | | | 13,14 | 1/2" | 16'-0" | | | | 15,16,17 | 1/2" | 21'-0" | | | | 18,19 | 5/8" | 26'-0" | | | | | | | | | ^{*} Last two digits of joist designation. ^{**} Refer to last digit(s) of Joist Designation. ^{***} NOTE: Erection Stability Span = Clear span + 8*. (See SJI Specifications Section 104.2) For spans EQUAL TO OR EXCEEDING that shown, one of the rows nearest mid-span must be bolted diagonal type. For spans through 60 feet, the bolted diagonal bridging must be installed BEFORE releasing the hoisting lines. FOR SPANS OVER 60 FEET, ALL BRIDGING ROWS MUST BE BOLTED DIAGONAL TYPE. Spans over 60 feet through 100 feet require two rows of bolted diagonal bridging to be installed, at one-third points, BEFORE releasing the hoisting lines. Spans over 100 feet require ALL rows of bolted diagonal bridging to be installed at BEFORE releasing the hoisting lines. ^{**} Size required due to requirements as indicated for bolted diagonal bridging connections per SJI Specifications Section 104.5(e). Minimum A307 Bolt required for connection. ### **LH & DLH SERIES LONGSPAN STEEL JOISTS** ### STANDARD TYPES Longspan steel joists can be furnished with either underslung or square ends, with parallel chords or with single or double pitched top chords to provide sufficient slope for roof drainage. The Longspan joist designation is determined by its nominal depth at the center of the span, except for offset double pitched joists, where the depth should be given at the ridge. A part of the designation should be either the section number or the total design load over the design live load (TL/LL given in plf). All pitched joists will be cambered in addition to the pitch unless specified otherwise. ### **CAMBER** **Non-Standard Types:** The design professional shall provide on the structural drawings the amount of camber desired in inches. If camber is not specified, Vulcraft will use the camber values for LH and DLH joists based on top chord length. **Standard Types:** The camber listed in the table will be fabricated into the joists unless the design professional specifically states otherwise on the structural drawings. ### **NON-STANDARD TYPES** The following joists can also be supplied by Vulcraft, however, THE DISTRICT SALES OFFICE OR MAN-UFACTURING FACILITY NEAREST YOU SHOULD BE CONTACTED FOR ANY LIMITATIONS IN DEPTH OR LENGTH. ^{**}Contact Vulcraft for minimum depth at ends. ### **CAMBER FOR STANDARD TYPES** LH &DLH series joists shall have camber in accordance with the following table:*** | Top (| Chord | Approx. | |---------|------------
-----------------| | Ler | ngth | Camber | | 20'-0" | (6096 mm) | 1/4" (6 mm) | | 30'-0" | (9144 mm) | 3/8" (10 mm) | | 40'-0" | (12192 mm) | 5/8" (16 mm) | | 50'-0" | (15240 mm) | 1" (25 mm) | | 60'-0" | (18288 mm) | 1 1/2" (38 mm) | | 70'-0" | (21336 mm) | 2" (51 mm) | | 80'-0" | (24384 mm) | 2 3/4" (70 mm) | | 90'-0" | (27432 mm) | 3 1/2" (89 mm) | | 100'-0" | (30480 mm) | 4 1/4" (108 mm) | | 110'-0" | (33528 mm) | 5" (127 mm) | | 120'-0" | (36576 mm) | 6" (152 mm) | | 130'-0" | (39621 mm) | 7" (178 mm) | | 140'-0" | (42672 mm) | 8" (203 mm) | | 144'-0" | (43890 mm) | 8 1/2" (216 mm) | ^{***} NOTE: If full camber is not desired near walls or other structural members please note on the structural drawings. ### LH & DLH SERIES LONGSPAN STEEL JOISTS ANCHORAGE TO STEEL SEE SJI SPECIFICATION 104.4 (b) AND 104.7 (b) ANCHORAGE TO MASONRY SEE SJI SPECIFICATION 104.4 (a) AND 104.7 (a) BOLTED CONNECTION See Note (c) Typically required at columns **CEILING EXTENSION** **BOTTOM CHORD EXTENSION** *If bottom chord extension is to be bolted or welded the specifiying professional must provide axial loads on structural drawings. TOP CHORD EXTENSION See Note (a) - (a) Extended top chords or full depth cantilever ends require the special attention of the specifying professional. - The magnitude and location of the design loads to be supported, the deflection requirements, and the proper bracing shall be clearly indicated on the structural drawings. - (b) See SJI Specification Section 105 for Handling and Erection of LH and DLH joists. - (c) The Occupational Safety and Health Administration Standards (OSHA), Paragraph 1910.12 refers to Paragraph 1518.751 of "Construction Standards" which states: "In steel framing, where bar joists are utilized, and columns are not framed in at least two directions with structural steel members, a bar joist shall be field-bolted at columns to provide lateral stability during construction." NOTE: Configurations may vary from that shown. SQUARE END See SJI Specification 104.5 (f). Cross bridging required at end of bottom bearing joist. ### LH & DLH SERIES LONGSPAN STEEL JOISTS ### HORIZONTAL BRIDGING For the proper use of horizontal bridging refer to sections 104.5(a) and 105. **NOTE**: Do not weld bridging to web members. Do not hang <u>any</u> mechanical, electrical, etc. from bridging. ### **CROSS BRIDGING** - (a) Horizontal Bridging units shall be used in the space adjacent to the wall to allow for proper deflection of the joist nearest the wall. - (b) For required bolt size refer to bridging table on page 136. NOTE: Clip configuration may vary from that shown. # LH & DLH SERIES OPEN WEB STEEL JOISTS SLOPED SEAT REQUIREMENTS LOW END HIGH END - * 7 1/2" at 18 and 19 chord section numbers. Consult Vulcraft for information when TCX's are present. - ** Add 2 1/2" to seat depths at 18 and 19 chord section numbers. ### NOTES: - (1) Depths shown are the minimums required for fabrication of sloped bearing seats. - (2) $d = 5/8 + 5 / \cos \theta + 6 \tan \theta$ - (3) Clearance must be checked at outer edge of support as shown in detail B. Increase bearing depth as required to permit passage of 5" deep extension. - (4) If extension depth greater than 5" is required (see detail B and D) increase bearing depths accordingly. # **NOTES** ### **VULCRAFT LH & DLH SERIES / GENERAL INFORMATION** ### **HIGH STRENGTH** ### **ECONOMICAL** **DESIGN** – Vulcraft LH & DLH Series long span steel joists are designed in accordance with the specifications of the Steel Joist Institute. ACCESSORIES see page 45. ### **ROOF SPANS TO 144'-0** ### FLOOR SPANS TO 120'-0 **PAINT** – Vulcraft joists receive a shop-coat of rust inhibitive primer whose performance characteristics conform to those of the Steel Joist Institute specification 102.4. SPECIFICATIONS see page 50. | | MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | | | | | | |-------|---|----------------|-----------------|-----------------|-----------------|--|--| | | BRIDGING ANGLE SIZE-EQUAL LEG ANGLES | | | | | | | | JOIST | 1x7/64 | 1-1/4x7/64 | 1-1/2x7/64 | 1-3/4x7/64 | 2x1/8 | | | | DEPTH | (25mm x 3mm) | (32mm x 3mm) | (38mm x 3mm) | (45mm x 3mm) | (51mm x 3mm) | | | | | r =.20" | r =.25" | r =.30" | r =.35" | r =.40" | | | | 32 | 6'-1"(1854mm) | 7'-10"(2387mm) | 9'-7"(2921mm) | 11'-4"(3454mm) | 13'-0"(3962mm) | | | | 36 | | 7'-9"(2362mm) | 9'-6"(2895 mm) | 11'-3"(3429mm) | 12'-11"(3973mm) | | | | 40 | | 7'-7"(2311mm) | 9'-5"(2870 mm) | 11'-2"(3403mm) | 12'-10"(3911mm) | | | | 44 | | 7'-5"(2260mm) | 9'-3"(2819 mm) | 11'-0"(3352mm) | 12'-9"(3886mm) | | | | 48 | | 7'-3"(2209mm) | 9'-2"(2794 mm) | 10'-11"(3327mm) | 12'-8"(3860mm) | | | | 52 | | | 9'-0"(2743 mm) | 10'-9"(3276mm) | 12'-7"(3835mm) | | | | 56 | | | 8'-10"(2692 mm) | 10'-8"(3251mm) | 12'-5"(3784mm) | | | | 60 | | | 8'-7"(2616 mm) | 10'-6"(3200mm) | 12'-4"(3759mm) | | | | 64 | | | 8'-5"(2565 mm) | 10'-4"(3149mm) | 12'-2"(3708mm) | | | | 68 | | | 8'-2"(2489 mm) | 10'-2"(3098mm) | 12'-0"(3657mm) | | | | 72 | | | 8'-0"(2438 mm) | 10'-0"(3048mm) | 11'-10"(3606mm) | | | | | MAXIM | UM JOIST S | PACING FOR | HORIZONTA | L BRIDGING | | |------------|---------------|---------------|--------------------|----------------|----------------|----------------| | | SPANS | OVER 60' RE | EQUIRE BOLT | ED DIAGONA | AL BRIDGING | | | | | BRIDGING A | NGLE SIZE-EC | QUAL LEG ANG | SLES | | | SECTION | 1x7/64 | 1-1/4x7/64 | 1-1/2x7/64 | 1-3/4x7/64 | 2x1/8 | 2-1/2x5/32 | | NUMBER* | (25mm x 3mm) | (32mm x 3mm) | (38mm x 3mm) | (45mm x 3mm) | (51mm x 3mm) | (64mm x 4mm) | | | r = .20" | r = .25" | r = .30" | r = .35" | r = .40" | r = .50" | | 02, 03, 04 | 4'-7"(1397mm) | 6'-3"(1905mm) | 7'-6"(2286mm) | 8'-9"(2667mm) | 10'-0"(3048mm) | 12'-4"(3759mm) | | 05 - 06 | 4'-1"(1245mm) | 5'-9"(1753mm) | 7'-6"(2286mm) | 8'-9"(2667mm) | 10'-0"(3048mm) | 12'-4"(3759mm) | | 07 - 08 | 3'-9"(1143mm) | 5'-1"(1549mm) | 6'-8"(2032mm) | 8'-6"(2590mm) | 10'-0"(3048mm) | 12'-4"(3759mm) | | 09 - 10 | | 4'-6"(1372mm) | 6'-0"(1829mm) | 7'-8"(2337mm) | 10'-0"(3048mm) | 12'-4"(3759mm) | | 11 - 12 | | 4'-1"(1245mm) | 5'-5"(1651mm) | 6'-10"(2083mm) | 8'-11"(2718mm) | 12'-4"(3759mm) | | 13 - 14 | | 3'-9"(1143mm) | 4'-11"(1499mm) | 6'-3"(1905mm) | 8'-2"(2489mm) | 12'-4"(3759mm) | | 15 - 16 | | | 4'-3"(1295mm) | 5'-5"(1651mm) | 7'-1"(2159mm) | 11'-0"(3353mm) | | 17 | | | 4'-0"(1219mm) | 5'-1"(1549mm) | 6'-8"(2032mm) | 10'-5"(3175mm) | | *REFER TO THE LAST DIGITS OF | JOIST DESIGNATION CONNECTION | N TO JOIST MUST RESIST | FORCES LISTED IN TABLE 104.5.1. | |------------------------------|------------------------------|------------------------|---------------------------------| | | | | | | LH & DLH TABLE
MINIMUM BEARING LENGTHS | | | | | |---|---------------|----------------|-------------|--| | Joist Type | On
Masonry | On
Concrete | On
Steel | | | LH 02 thru 17 | | | | | | DLH 10 thru 19 | 6" | 6" | 4" | | | MINIMUM BEARING F | LATE WID | THS | | | | LH 02 thru LH 12
DLH 10 thru DLH 12 | 9" | 9" | | | | LH 13 thru LH 17
DLH 13 thru DLH 19 | 12" | 12" | | | | | | | | | | | MAX. SPACING | HORIZ | ONTAL | |------------|-----------------|-------|--------| | SECTION | OF LINES OF | BRA | CING | | NUMBER* | BRIDGING | FOF | RCE** | | | | lbs. | (N) | | 02, 03, 04 | 11'-0" (3352mm) | 400 | (1779) | | 05 - 06 | 12'-0" (3657mm) | 500 | (2224) | | 07 - 08 | 13'-0" (3962mm) | 650 | (2891) | | 09 - 10 | 14'-0" (4267mm) | 800 | (3558) | | 11 - 12 | 16'-0" (4876mm) | 1000 | (4448) | | 13 - 14 | 16'-0" (4876mm) | 1200 | (5337) | | 15 - 16 | 21'-0" (6400mm) | 1600 | (7117) | | 17 | 21'-0' (6400mm) | 1800 | (8006) | | 18 - 19 | 26'-0" (7924mm) | 2000 | (8896) | | | | | | NUMBER OF LINES OF BRIDGING BASED ON CLEAR SPAN. *LAST TWO DIGITS OF JOIST DESIGNATION. **NOMINAL BRACING FORCE IS LINEACTORED. | Troiling to Drivious Greek to Critical Control Control | | | | | |--|---------|-------------|--|--| | MIN. A307 BOLT REQ'D FOR CONNECTION | | | | | | | SECTION | A307 BOLT | | | | SERIES | NUMBER* | DIAMETER | | | | LH/DLH | 2 - 12 | 3/8" (9mm) | | | | LH/DLH | 13 - 17 | 1/2" (12mm) | | | | DLH | 18 & 19 | 5/8" (15mm) | | | | | | | | | *LAST TWO DIGITS OF JOIST DESIGNATION. ### NOTES:1. Special designed LH and DLH can be supplied in longer lengths. See SLH Series Page 73. 2. Additional bridging may be required when joists support standing seam roof decks. The specifying professional should require that the joist manufacturer check the system and provide bridging as required to adequately brace the joists against lateral movement. For bridging requirements due to uplift pressures refer to sect. 104.12. # STANDARD SPECIFICATIONS FOR LONGSPAN STEEL JOISTS, LH-SERIES AND DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Adopted by the Steel Joist Institute February 15, 1978 Revised to November 10, 2003 - Effective March 01, 2005 SECTION 100. ### SCOPE This specification covers the design, manufacture and use of Longspan Steel Joists **LH-**Series, and Deep Longspan Steel Joists, **DLH-**Series. Load and Resistance Factor Design (LRFD) and Allowable Strength Design (ASD) are included in this specification. ### SECTION 101. ### **DEFINITION** The term "Longspan Steel Joists **LH**-Series and Deep Longspan Steel Joists **DLH**-Series", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength* has been attained by cold working. **LH**-Series are suitable for the direct support of floors and roof decks in buildings, and **DLH**-Series are suitable for direct support of roof decks in buildings. The design of **LH-** and **DLH-**Series joist chord and web sections shall be based on a yield strength of at least 36 ksi (250 MPa), but not greater than 50 ksi (345 MPa). Steel used for **LH-** and **DLH-**Series joist chord or web sections shall have a
minimum yield strength determined in accordance with one of the procedures specified in Section 102.2, which is equal to the yield strength assumed in the design. **LH-** and **DLH-**Series Joists shall be designed in accordance with these specifications to support the loads given in the Standard Load Tables for Longspan and Deep Longspan Steel Joists, **LH-** and **DLH-**Series, attached hereto. * The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1, "Yield Point" and in paragraph 13.2, "Yield Strength", of ASTM Standard A370, "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", or as specified in Section 102.2 of this Specification. Standard Specifications and Load Tables, Longspan Steel Joists **LH-**Series And Deep Longspan Steel Joist **DLH-**Series Steel Joist Institute - Copyright, 2005 SECTION 102. ### **MATERIALS** ### 102.1 STEEL The steel used in the manufacture of chord and web sections shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength, Low-Alloy Structural Steel, ASTM A242/A242M. - High-Strength Carbon-Manganese Steel of Structural Quality ASTM A529/A529M, Grade 50. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M Grade 42 or 50. - High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 inches (100 mm) Thick, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Corrosion Resistance, ASTM A606. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1008/A1008M - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1011/A1011M or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 102.2. ### **102.2 MECHANICAL PROPERTIES** The yield strength used as a basis for the design stresses prescribed in Section 103 shall be at least 36 ksi (250 MPa), but shall not be greater than 50 ksi (345 MPa). Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370, and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A529/A529M, A572/A572M, A588/A588M, whichever specification is applicable on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI North American Specification for the Design of Cold-Formed Steel Structural Members. They shall also indicate compliance with these provisions and with the following additional requirements: - The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 6 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall be not greater than 20 times its least radius of gyration. - d) If any test specimen fails to pass the requirements of subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. ### **102.3 WELDING ELECTRODES** The following electrodes shall be used for arc welding: a) For connected members both having a specified yield strength greater than 36 ksi (250 MPa). AWS A5.1: E70XX AWS A5.5: E70XX-X AWS A5.17: F7XX-EXXX, F7XX-ECXXX flux electrode combination AWS A5.18: ER70S-X, E70C-XC, E70C-XM AWS A5.20: E7XT-X. E7XT-XM AWS A5.23: F7XX-EXXX-XX, F7XX-ECXXX-XX AWS A5.28: ER70S-XXX, E70C-XXX AWS A5.29: E7XTX-X, E7XTX-XM b) For connected members both having a specified minimum yield strength of 36 ksi (250 MPa) or one having a specified minimum yield strength of 36 ksi (250 MPa), and the other having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E60XX AWS A5.17: F6XX-EXXX, F6XX-ECXXX flux electrode combination AWS A5.20: E6XT-X, E6XT-XM AWS A5.29: E6XTX-X, E6XT-XM or any of those listed in Section 102.3(a). Other welding methods, providing equivalent strength as demonstrated by tests, may be used. ### **102.4 PAINT** The standard shop paint is intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15 - Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. SECTION 103. # DESIGN AND MANUFACTURE ### **103.1 METHOD** Joists shall be designed in accordance with these specifications as simply supported, uniformly loaded trusses supporting a floor or roof deck so constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates, use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members that are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. ### **Design Basis:** Designs shall be made according to the provisions in this Specification for either Load and Resistance Factor Design (LRFD) or for Allowable Strength Design (ASD). ### **Load Combinations:** ### LRFD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed for the ### LONGSPAN AND DEEP LONGSPAN STEEL JOISTS, LH- AND DLH-SERIES factored loads based on the factors and load combinations as follows: 1.4D $1.2D + 1.6 (L, or L_r, or S, or R)$ ### ASD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed based on the load combinations as follows: D $D + (L, or L_r, or S, or R)$ ### Where: D = dead load due to the weight of the structural elements and the permanent features of the structure L = live load due to occupancy and movable equipment L_r= roof live load S = snow load R = load due to initial rainwater or ice exclusive of the ponding contribution When special loads are specified and the specifying professional does not provide the load combinations, the provisions of ASCE 7, "Minimum Design Loads for Buildings and Other Structures" shall be used for LRFD and ASD load combinations. ### 103.2 DESIGN AND ALLOWABLE STRESSES ### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_w shall not exceed ϕF_n where, f_{...} = required stress ksi (MPa) F_n = nominal stress ksi (MPa) φ = resistance factor $\phi F_n = \text{design stress}$ ### **Design Using Allowable Strength Design (ASD)** Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where, f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor $F_n/\Omega =$ allowable stress ### Stresses: (a) **Tension:** $\phi_t = 0.90 \text{ (LRFD)} \ \Omega_t = 1.67 \text{ (ASD)}$ For Chords: $F_v = 50$ ksi (345 MPa) For Webs: $F_v = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_v = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $0.9F_v$ (LRFD) (103.2-1) Allowable Stress = $0.6F_v$ (ASD) (103.2-2) (b) Compression: $\phi_c = 0.90$ (LRFD) $\Omega_c = 1.67$ (ASD) For members with $\frac{K}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$ $$F_{cr} = Q \left[0.658 \left(\frac{QF_y}{F_e} \right) \right] F_y \qquad (103.2-3)$$ For members with $\frac{K_{\ell}}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ $$F_{cr} = 0.877F_{e}$$ (103.2-4) Where, $F_{\rm e}$ = elastic buckling stress determined in accordance with Equation 103.2-5. $$F_{e} = \frac{\pi^{2}E}{\left(\frac{K\ell/r}{r}\right)^{2}}$$ (103.2-5) For hot-rolled sections, "Q" is the full
reduction factor for slender compression elements. Design Stress = $$0.9F_{cr}$$ (LRFD) (103.2-6) Allowable Stress = $$0.6F_{cr}$$ (ASD) (103.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for web members, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). Use $1.2 \ell/r_x$ for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member; where = r_x member radius of gyration in the plane of the joist. For cold-formed sections the method of calculating the nominal column strength is given in the AISI, *North American Specification for the Design of Cold-Formed Steel Structural Members*. ### (c) Bending: $\phi_b = 0.90 \text{ (LRFD) } \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_v = 50$ ksi (345 MPa) Design Stress = $$0.9F_v$$ (LRFD) (103.2-8) Allowable Stress = $$0.6F_v$$ (ASD) (103.2-9) For web members of solid round cross section: $F_y = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_y = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $$1.45F_v$$ (LRFD) (103.2-10) Allowable Stress = $$0.95F_v$$ (ASD) (103.2-11) For bearing plates: $F_v = 50 \text{ ksi } (345\text{MPa}), \text{ or } F_v = 36 \text{ ksi } (250\text{MPa})$ Design Stress = $$1.35F_v$$ (LRFD) (103.2-12) Allowable Stress = $$0.9F_v$$ (ASD) (103.2-13) ### (d) Weld Strength: Shear at throat of fillet welds: Nominal Shear Stress = $$F_{nw} = 0.6F_{exx}$$ (103.2-14) **LRFD:** $\phi_{w} = 0.75$ Design Shear Strength = $$\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A$$ (103.2-15) **ASD:** $\Omega_w = 2.0$ Allowable Shear Strength = $$R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx} A$$ (103.2-16) A = effective throat area Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations...... $F_{exx} = 70 \text{ ksi } (483 \text{ MPa})$ Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations...... $F_{exx} = 60$ ksi (414 MPa) Tension or compression on groove or butt welds shall be the same as those specified for the connected material. ### 103.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ_s/r of members as a whole or any component part shall not exceed the values given in Table 103.3-1, Parts A. The effective slenderness ratio, $K \ell/r^*$, to be used in calculating the nominal stresses F_{cr} and F'_{e} , is the largest value as determined from Table 103.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 103.3-1 are defined as follows: - ℓ = Length center-to-center of panel points, except ℓ = 36 in. (914 mm) for calculating ℓ/r_y of top chord member. - $\ell_{\rm s}$ = maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties). - r_x = member radius of gyration in the plane of the joist. - r_v = member radius of gyration out of the plane of the joist. - r_z = least radius of gyration of a member component. - * See P.N. Chod and T. V. Galambos, Compression Chords Without Fillers in Longspan Steel Joists, Research Report No. 36, June 1975 Structural Division, Civil Engineering Department, Washington University, St. Louis, MO. # TABLE 103.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS ### I TOP CHORD INTERIOR PANEL A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ/r , of members as a whole or any component part shall not exceed 90. B. The effective slenderness ratio to determine "F_{cr}" 1. With fillers or ties $0.75 \ \ell/r_x \qquad 1.0 \ \ell/r_y \qquad \qquad 1.0 \ \ell_s/r_z$ 2. Without fillers or ties $0.75 \ \ell/r_z \qquad \qquad 0.75 \ \ell/r_z$ 3. Single component members 0.75 ℓ/r_x 1.0 ℓ/r_y C. The effective slenderness ratio to determine "F'_e" 1. With fillers or ties $0.75 \ \ell/r_x$ 2. Without fillers or ties $0.75 \ \ell/r_x$ 3. Single component members $0.75 \ \ell/r_x$ ### **II TOP CHORD END PANEL** A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ_s/r , of members as a whole or any component part shall not exceed 120. B. The effective slenderness ratio to determine "F_{cr}" $1.0 \ \ell_s/r_z$ 1. With fillers or ties $1.0 \ \ell/r_{x}$ 1.0 ℓ/r_{v} 2. Without fillers or ties $1.0 \, \ell/r_z$ $1.0 \ell/r_v$ 1.0 ℓ/r_{x} 3. Single component members C. The effective slenderness ratio to determine "F' a" 1. With fillers or ties $1.0 \ell/r_x$ 2. Without fillers or ties $1.0 \ell/r_x$ 3. Single component members $1.0 \ell/r_{\rm x}$ ### **III TENSION MEMBERS - CHORDS AND WEBS** A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ/r of members as a whole or any component part shall not exceed 240. ### IV COMPRESSION WEB MEMBERS A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ_s/r , of members as a whole or any component part shall not exceed 200. B. The effective slenderness ratio to determine "Fc" 1. With fillers or ties $0.75 \ \ell/r_x \qquad 1.0 \ \ell/r_y \qquad 1.0 \ \ell_s/r_z$ 2. Without fillers or ties $1.0 \ \ell/r_z$ 3. Single component members $0.75 \ \ell/r_x^* \qquad 1.0 \ \ell/r_y$ * Use 1.2 ℓ/r_x for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member. ### **103.4 MEMBERS** ### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than $\ell/170$ where ℓ is the spacing in inches (millimeters) between lines of bridging as specified in Section 104.5(d) The top chord shall be considered as stayed laterally by the floor slab or roof deck provided the requirements of Section 104.9(e) of this specification are met. The top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that ### For LRFD: at the panel point: $$f_{au} + f_{bu} \le 0.9F_y$$ (103.4-1) at the mid panel: for $\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$, $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9} \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_e}\right)} \right] Q \phi_b F_y \right] \le 1.0 \quad (103.4-2)$$ for $$\frac{f_{au}}{\phi_a F_{cr}}$$ < 0.2, $$\left(\frac{f_{au}}{2\phi_c F_{cr}}\right) + \left\lceil \frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_{e}'}\right)} \right\rceil Q \phi_b F_y} \right\rceil \le 1.0 \quad (103.4-3)$$ f_{au} = P_u/A = Required compressive stress, ksi (MPa) P_u = Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_u/S =$ Required bending stress at the location under consideration, ksi (MPa) M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ/r as defined in Section 103.2(b) $C_m = 1 - 0.3 f_{au}/\phi F'_e$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F'_{e} = \frac{{}^{2}_{\pi}E}{\left(\frac{K\ell/r_{x}}{r_{x}}\right)^{2}}, \text{ ksi (MPa)}$$ Where ℓ is the panel length,in inches (millimeters), as defined in Section 103.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 103.2(b) A = Area of the top chord, in.2, (mm2) ### For ASD: at the panel point: $$f_a + f_b \le 0.6F_v$$ (103.4-4) at the mid panel: for $\frac{f_a}{F_a} \ge 0.2$, $$\frac{f_{a}}{F_{a}} + \frac{8}{9} \left[\frac{C_{m}f_{b}}{1 - \left(\frac{1.67f_{a}}{F_{e}}\right)} \right] QF_{b} \right] \le 1.0 \quad (103.4-5)$$ for $$\frac{f_a}{F_a}$$ < 0.2, $$\left(\frac{f_a}{2F_a}\right) + \left[\frac{C_m f_b}{1 - \left(\frac{1.67 f_a}{F_e}\right)}\right] QF_b$$ ≤ 1.0 (103.4-6) f_a = P/A = Required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = Required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_a = Allowable axial compressive stress, based on ℓ/r as defined in Section 103.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6F_v, ksi (MPa) $C_m = 1 - 0.50 f_a/F_e$ for end panels $C_m = 1 - 0.67 f_a/F_e$ for interior panels ### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of 1/2 of 1.0 percent of the top chord axial force. ### (c) Depth Joists may have either parallel chords or a top chord slope of 1/8 inch per foot (1:96). The depth, for the purpose of design, in all cases shall be the depth at mid-span. ### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the neutral axis of chord members may be neglected when it does not exceed the distance between the neutral axis and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of joists shall be proportioned to resist bending produced by eccentricity at the support. In those cases where a single angle compression member is attached to the outside of the stem of a tee or double angle chord, due consideration shall be given to eccentricity. ### (e) Extended Ends Extended top chords or full depth cantilever ends require the special attention
of the specifying professional. The magnitude and location of the loads to be supported, deflection requirements, and proper bracing shall be clearly indicated on the structural drawings. ### **103.5 CONNECTIONS** ### (a) Methods Joist connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. ### (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between layers of weld metal and between weld metal and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 millimeters) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 millimeters) in any 1 inch (25 millimeters) of design weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. ### (2) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (3) Weld Inspection by Outside Agencies (See Section 104.13 of this specification). The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 103.5(a)(1). Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. ### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices may occur at any point in chord or web members. Splices shall be designed for the member force but not less than 50 percent of the member strength. Members containing a butt weld splice shall develop an ultimate tensile force of at least 57 ksi (393 MPa) times the full design area of the chord or web. The term "member" shall be defined as all component parts comprising the chord or web, at the point of splice. ### (c) Field Splices Field Splices shall be designed by the manufacturer and may be either bolted or welded. Splices shall be designed for the member force, but not less than 50 percent of the member strength. ### **103.6 CAMBER** Joists shall have approximate cambers in accordance with the following: **TABLE 103.6-1** | Top C | hord Length_ | Approxii | mate Camber | |---------|--------------|----------|-------------| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | 50'-0" | (15240 mm) | 1" | (25 mm) | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | 70'-0" | (21336 mm) | 2" | (51 mm) | | 80'-0" | (24384 mm) | 2 3/4" | (70 mm) | | 90'-0" | (27432 mm) | 3 1/2" | (89 mm) | | 100'-0" | (30480 mm) | 4 1/4" | (108 mm) | | 110'-0" | (33528 mm) | 5" | (127 mm) | | 120'-0" | (36576 mm) | 6" | (152 mm) | | 130'-0" | (39621 mm) | 7" | (178 mm) | | 140'-0" | (42672 mm) | 8" | (203 mm) | | 144'-0" | (43890 mm) | 8 1/2" | (216 mm) | The specifying professional shall give consideration to coordinating joist camber with adjacent framing. ### 103.7 VERIFICATION OF DESIGN AND MANUFACTURE ### (a) Design Calculations Companies manufacturing any **LH-** or **DLH-**Series Joists shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. ### (b) In-Plant Inspections Each manufacturer shall verify their ability to manufacture **LH-** and **DLH-**Series Joists through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The plant inspections are not a guarantee of the quality of any specific joists; this responsibility lies fully and solely with the individual manufacturer. ### SECTION 104. ### **APPLICATION** ### **104.1 USAGE** This specification shall apply to any type of structure where floors and roofs are to be supported directly by steel joists installed as hereinafter specified. Where joists are used other than on simple spans under uniformly distributed loading as prescribed in Section 103.1, they shall be investigated and modified if necessary to limit the required stresses to those listed in Section 103.2. **CAUTION:** If a rigid connection of the bottom chord is to be made to a column or other support, it shall be made only after the application of the dead loads. The joist is then no longer simply supported, and the system must be investigated for continuous frame action by the specifying professional. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the specifying professional. The moment plates shall be furnished by other than the joist manufacturer. ### 104.2 SPAN The clear span of a joist shall not exceed 24 times its depth. The term "Span" as used herein is defined as the clear span plus 8 inches (203 millimeters). ### 104.3 DEPTH The nominal depth of sloping chord joists shall be the depth at mid-span. The standard slope of the top chord shall be 1/8 inch per foot (1:96). ### **104.4 END SUPPORTS** ### (a) Masonry and Concrete **LH-** and **DLH-**Series Joists supported by masonry or concrete are to bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying professional in the design of the steel bearing plate and the masonry or concrete. The ends of **LH-** and **DLH-**Series Joists shall extend a distance of not less than 6 inches (152 millimeters) over the masonry or concrete support and be anchored to the steel bearing plate. The plate shall be located not more than 1/2 inch (13 millimeters) from the face of the wall and shall be not less than 9 inches (229 millimeters) wide perpendicular to the length of the joist. The plate is to be designed by the specifying professional and shall be furnished by other than the joist manufacturer. Where it is deemed necessary to bear less than 6 inches (152 millimeters) over the masonry or concrete support, special consideration is to be given to the design of the steel bearing plate and the masonry or concrete by the specifying professional. The joists must bear a minimum 4 inches (102 millimeters) on the steel bearing plate. ### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying professional in the design of the steel support. The ends of **LH-** or **DLH-**Series Joists shall extend a distance of not less than 4 inches (102 millimeters) over the steel supports. Where it is deemed necessary to butt opposite joists over a narrow steel support with bearing less than that noted above, special ends must be specified, and such ends shall have positive attachment to the support, either by bolting or welding. ### 104.5 BRIDGING Top and bottom chord bridging is required and shall consist of one or both of the following types. ### (a) Horizontal Horizontal bridging lines shall consist of continuous horizontal steel members. The ℓ/r of the bridging member shall not exceed 300, where ℓ is the distance in inches (millimeters) between attachments and r is the least radius of gyration of the bridging member. ### (b) Diagonal Diagonal bridging shall consist of cross-bracing with a ℓ/r ratio of not more than 200, where ℓ is the distance in inches (millimeters) between connections, and r is the least radius of gyration of the bridging member. Where cross-bracing members are connected at their point of intersection, the ℓ distance shall be taken as the distance in inches (millimeters) between connections at the point of intersection of the bridging members and the connections to the chord of the joists. ### (c) Bridging Lines For spans up through 60 feet (18288 mm), welded horizontal bridging may be used except where the row of bridging near- est the center is required to be bolted diagonal bridging as indicated by the <u>Red shaded area</u> in the Load Table. For spans over 60 feet (18288 mm) bolted diagonal bridging shall be used as indicated by the <u>Blue and Gray shaded</u> areas of the Load Table. ### (d) Quantity and Spacing The maximum spacing of lines of top chord bridging shall not exceed the values in Table 104.5-1. The number of rows of bottom chord bridging, including bridging required per Section 104.12, shall not be less than the number of top chord rows. Rows of bottom chord bridging are permitted to be spaced independently of rows of top chord bridging. The spacing of rows of bottom chord bridging shall meet the slenderness requirement of Section 103.4(a) and any specified strength requirements. | | Table 104.5 | -1 | | |------------------------------|--|------------|------------------------------------| | LH-DLH
SECTION*
NUMBER | MAX. SPACING
OF LINES OF
TOP CHORD
BRIDGING | HORI
BR | IINAL**
ZONTAL
ACING
DRCE | | | | lbs | (N) | | 02,03,04 | 11'-0" (3352 mm) | 400 | (1779) | | 05,06 | 12'-0" (3657 mm) | 500 | (2224) | | 07,08 | 13'-0" (3962 mm) | 650 | (2891) | | 09,10 | 14'-0" (4267 mm) | 800 | (3558) | | 11,12 | 16'-0" (4876 mm) | 1000 | (4448) | | 13,14 | 16'-0" (4876 mm) | 1200 | (5337) | | 15,16 | 21'-0" (6400 mm) | 1600 | (7117) | | 17 | 21'-0" (6400 mm) | 1800 |
(8006) | | 18,19 | 26'-0" (7924 mm) | 2000 | (8896) | Number of lines of bridging is based on joist clear span dimensions. ### (e) Connections Connections to the chords of the steel joists shall be made by positive mechanical means or by welding, and capable of resisting a horizontal force not less than that specified in Table 104.5-1. ### (f) Bottom Chord Bearing Joists Where bottom chord bearing joists are utilized, a row of diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. ### 104.6 INSTALLATION OF BRIDGING Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the joist placement plans. The ends of all bridging lines terminating at walls or beams shall be anchored to resist the nominal force shown in Table 104.5-1. ### **104.7 END ANCHORAGE** ### (a) Masonry and Concrete Ends of **LH-** and **DLH-**Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millimeters) ASTM A307 bolts (minimum), or the equivalent. ### (b) Steel Ends of **LH-** and **DLH-**Series Joists resting on steel supports shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millimeters) ASTM A307 bolts, or the equivalent. When LH/DLH series joists are used to provide lateral stability to the supporting member, the final connection shall be made by welding or as designated by the specifying professional. ### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces (Refer to Section 104.12). ### **104.8 JOIST SPACING** Joists shall be spaced so that the loading on each joist does not exceed the design load (LRFD or ASD) for the particular joist designation and span as shown in the applicable load tables ### 104.9 FLOOR AND ROOF DECKS ### (a) Material Floor and roof decks may consist of cast-in-place or precast concrete or gypsum, formed steel, wood, or other suitable material capable of supporting the required load at the specified joist spacing. ### (b) Thickness Cast-in-place slabs shall be not less than 2 inches (51 millimeters) thick. ### (c) Centering Centering for structural slabs may be ribbed metal lath, corrugated steel sheets, paper-backed welded wire fabric, removable centering or any other suitable material capable of supporting the slab at the designated joist spacing. Centering shall not cause lateral displacement or damage to the top chord of joists during installation or removal of the centering or placing of the concrete. ### (d) Bearing Slabs or decks shall bear uniformly along the top chords of the joists. ^{*} Last two digits of joist designation shown in load table. ^{**} Nominal bracing force is unfactored. ### (e) Attachments The spacing of attachments along the top chord shall not exceed 36 inches (914 millimeters). Such attachments of the slab or deck to the top chords of joists shall be capable of resisting the following forces: | Та | able 104.9-1 | |--------------------|--------------------------| | SECTION*
NUMBER | NOMINAL** FORCE REQUIRED | | 02 to 04 incl. | 120 lbs/ft (1.75 kN/m) | | 05 to 09 incl. | 150 lbs/ft (2.19 kN/m) | | 10 to 17 incl. | 200 lbs/ft (2.92 kN/m) | | 18 and 19 | 250 lbs/ft (3.65 kN/m) | ^{*} Last two digits of joist designation shown in the load table. ### (f) Wood Nailers Where wood nailers are used, such nailers in conjunction with deck or slab shall be firmly attached to the top chords of the joists in conformance with Section 104.9(e). ### (g) Joist with Standing Seam Roofing The stiffness and strength of standing-seam roof clips varies from one manufacturer to another. Therefore, some roof systems cannot be counted on to provide lateral stability to the joists which support the roof. Sufficient stability must be provided to brace the joists laterally under the full design load. The compression chord must resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). Out of plane strength may be achieved by adjusting the bridging spacing and/or increasing the compression chord area, the joist depth, and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_v; where L is the bridging spacing in inches (millimeters). The maximum bridging spacing may not exceed that specified in Section 104.5(d). Horizontal bridging members attached to the compression chords and their anchorages must be designed for a compressive axial force of 0.0025nP, where n is the number of joists between end anchors and P is the chord design force in kips (Newtons). The attachment force between the horizontal bridging member and the compression chord is 0.005P. Horizontal bridging attached to the tension chords shall be proportioned so that the slenderness ratio between attachments does not exceed 300. Diagonal bridging shall be proportioned so that the slenderness ratio between attachments does not exceed 200. ### 104.10 DEFLECTION The deflection due to the design live load shall not exceed the following: Floors: 1/360 of span. Roofs: 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of joists. * For further reference, refer to Steel Joist Institute Technical Digest #5, "Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. ### 104.11 PONDING* The ponding investigation shall be performed by the specifying professional. * For further reference, refer to Steel Joist Institute Technical Digest #3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and AISC Specifications. ### 104.12 UPLIFT Where uplift forces due to wind are a design requirement, these forces must be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract documents shall indicate if the net uplift is based on ASD or LRFD. When these forces are specified, they must be considered in the design of joists and/or bridging. A single line of **bottom chord** bridging must be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration.* * For further reference, refer to Steel Joist Institute Technical Digest #6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". ### 104.13 INSPECTION Joists shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, they may reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such shop inspection of the joists at the manufacturing shop by the purchaser's inspectors at purchaser's expense. ### 104.14 PARALLEL CHORD SLOPED JOISTS The span of a parallel chord sloped joist shall be defined by the length along the slope. Minimum depth, load-carrying capacity, and bridging requirements shall be determined by the sloped definition of span. The Load Table capacity shall be the component normal to the joist. ^{**} Nominal force is unfactored. SECTION 105.* # ERECTION STABILITY AND HANDLING When it is necessary for the erector to climb on the joists, extreme caution must be exercised since unbridged joists may exhibit some degree of instability under the erector's weight. ### (a) Stability Requirements Before an employee is allowed on the steel joist: BOTH ends of joists at columns (or joists designated as column joists) shall be attached to its supports. For all other joists a minimum of one end shall be attached before the employee is allowed on the joist. The attachment shall be in accordance with Section 104.7 – End Anchorage. When a bolted seat connection is used for erection purposes, as a minimum, the bolts must be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This may be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. - On steel joists that do not require erection bridging as shown by the unshaded area of the Load Table, only one employee shall be allowed on the joist unless all bridging is installed and anchored. - * For a thorough coverage of this topic, refer to SJI Technical Digest #9, "Handling and Erection of Steel Joists and Joist Girders". - 3) Where the span of the steel joist is within the <u>Red</u> shaded area of the Load Table, the following shall apply: - a) The row of bridging nearest the mid span of the steel joist shall be bolted diagonal erection bridging; and - b) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored, unless an alternate method of stabilizing the joist has been provided; and - c) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - 4) Where the span of the steel joist is within the <u>Blue shaded area</u> of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until the two rows of bolted diagonal erection bridging nearest the third points of the steel joist are installed and anchored; and - c) No more than two employees shall be allowed on these spans until
all other bridging is installed and anchored. - 5) Where the span of the steel joist is in the <u>Gray shaded</u> <u>area</u> of the Load Table, the following shall apply: - a) All rows of bridging shall be bolted diagonal bridging; and - b) Hoisting cables shall not be released until all bridging is installed and anchored; and - c) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - 6) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide lateral stability. - 7) In the case of bottom chord bearing joists, the ends of the joist must be restrained laterally per <u>Section 104.5(f)</u> before releasing the hoisting cables. - 8) After the joist is straightened and plumbed, and all bridging is completely installed and anchored, the ends of the joists shall be fully connected to the supports in accordance with Section 104.7- End Anchorage. ### (b) Landing and Placing Loads - Except as stated in paragraph 105(b)(3) of this section, no "construction loads"⁽¹⁾ are allowed on the steel joists until all bridging is installed and anchored, and all joist bearing ends are attached. - During the construction period, loads placed on the joists shall be distributed so as not to exceed the capacity of the joists. - 3) No bundle of deck may be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless the following conditions are met: - a) The contractor has first determined from a "qualified person" (2) and documented in a site specific erection plan that the structure or portion of structure is capable of supporting the load; - b) The bundle of decking is placed on a minimum of 3 steel joists; - c) The joists supporting the bundle of decking are attached at both ends; - d) At least one row of bridging is installed and anchored; - e) The total weight of the decking does not exceed 4000 pounds (1816 kilograms); and - f) The edge of the bundle of decking shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. g) The edge of the construction load shall be placed within 1 foot (0.30 meters) of the bearing surface of the joist end. ### (c) Field Welding - All field welding shall be performed in accordance with contract documents. Field welding shall not damage the joists. - 2) On cold-formed members whose yield strength has been attained by cold working, and whose as-formed strength is used in the design, the total length of weld at any one point shall not exceed 50 percent of the overall developed width of the cold-formed section. - (1) See page 150 for definition of "construction load". A copy of the OSHA Steel Erection Standard §1926.757, Open Web Steel Joists, is included in Appendix E for reference purposes. ### (d) Handling Particular attention should be paid to the erection of Longspan and Deep Longspan Steel Joists. Care shall be exercised at all times to avoid damage to the joists and accessories. Each joist shall be adequately braced laterally before any loads are applied. If lateral support is provided by bridging, the bridging lines as defined in Section 105(a), paragraphs 2, 3, 4 and 5, must be anchored to prevent lateral movement. ### (e) Fall Arrest Systems Steel joists shall not be used as anchorage points for a fall arrest system unless written approval to do so is obtained from a "qualified person" (2). (2) See page 150 for OSHA definition of "qualified person". # STANDARD LRFD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of **LRFD LH-Series** Steel Joists. The weight of factored DEAD loads, including the joists, must in all cases be deducted to determine the factored LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. The **RED** figures in this load table are the unfactored, nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the **RED** figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/8 inch per foot. If pitch exceeds this standard, the load table does <u>not</u> apply. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the load table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. Where the joist span is in the **BLUE SHADED** area of the load table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. <u>Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed.</u> The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} = \textbf{RED}$ figure in the Load Table, and L = (clear span + 0.67) in feet. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas. The top chords are considered as being stayed laterally by floor slab or roof deck. The approximate joist weights per linear foot shown in these tables do not include accessories. # **LRFD** | | | Base | STANDAF
ed on a 50 ksi | | | | | | | | | | | | olf) | | | | | |-------------|----------------------------|-------------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|-------------|-------------|------------|------------|------------| | Joist | Approx. Wt in Lbs. Per | Depth
in | SAFE LOAD*
in Lbs. | | | | | | | CLE | AR SP | AN IN I | EET | | | | | | | | Designation | Linear Ft
(Joists only) | inches | Between
21-24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 18000 | 702 | 663 | 627 | 586 | 550 | 517 | 486 | 32 | 433 | 409 | 388 | 367 | | | | | | | | | | 313 | 284 | 259 | 234 | 212 | 193 | 175 | 160 | 147 | 135 | 124 | 114 | | | | | | 18LH03 | 11 | 18 | 19950 | 781
348 | 739
317 | 700
289 | 657
262 | 613
236 | 573
213 | 538
194 | 505
177 | 475
161 | 448
148 | 424
136 | 400
124 | | | | | | 18LH04 | 12 | 18 | 23250 | 906 | 856 | 802 | 750 | 703 | 660 | 619 | 582 | 547 | 516 | 487 | 462 | | | | | | 18LH05 | 15 | 18 | 26250 | 403
1026 | 367
972 | 329
921 | 296
871 | 266
814 | 242
762 | 219
714 | 200
672 | 182
631 | 167
595 | 1 <u>53</u>
562 | 141
532 | | | | | | | | | | 454 | 414 | 378 | 345 | 311 | 282 | 256 | 233 | 212 | 195 | 179 | 164 | | | | | | 18LH06 | 15 | 18 | 31050 | 1213
526 | 1123
469 | 1044
419 | 972
377 | 907
340 | 849
307 | 796
280 | 748
254 | 705
232 | 664
212 | 627
195 | 594
180 | | | | | | 18LH07 | 17 | 18 | 32250 | 1260 | 1213 | 1170 | 1089 | 1017 | 952 | 892 | 838 | 789 | 744 | 703 | 666 | | | | | | 1021107 | '' | 10 | 02230 | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | 204 | | | | | | 18LH08 | 19 | 18 | 33600 | 1314 | 1264 | 1218 | 1176 | 1137 | 1075 | 1020 | 961 | 906 | 856 | 810 | 768 | | | | | | | | | | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | 226 | | | | | | 18LH09 | 21 | 18 | 36000 | 1404 | 1351 | 1302 | 1257 | 1215 | 1174 | 1138 | 1069 | 1006 | 949 | 897 | 849 | | | | | | | | | | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | 245 | | | | | | | | | 22-24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 20LH02 | 10 | 20 | 16950 | 663
306 | 655
303 | 646 | 615
274 | 582
250 | 547
228 | 516
208 | 487
190 | 460
174 | 436
160 | 412 | 393 | 373
126 | 355
117 | 337
108 | 322 | | 20LH03 | 11 | 20 | 18000 | 703 | 694 | 298
687 | 678 | 651 | 621 | 592 | 558 | 528 | 499 | 147
474 | 136
448 | 424 | 403 | 382 | 101
364 | | 2011103 | ''' | 20 | 16000 | 337 | 333 | 317 | 302 | 280 | 258 | 238 | 218 | 200 | 184 | 169 | 156 | 143 | 133 | 123 | 114 | | 20LH04 | 12 | 20 | 22050 | 861 | 849 | 837 | 792 | 744 | 700 | 660 | 624 | 589 | 558 | 529 | 502 | 477 | 454 | 433 | 412 | | | | | | 428 | 406 | 386 | 352 | 320 | 291 | 265 | 243 | 223 | 205 | 189 | 174 | 161 | 149 | 139 | 129 | | 20LH05 | 14 | 20 | 23700 | 924 | 913 | 903 | 892 | 856 | 816 | 769 | 726 | 687 | 651 | 616 | 585 | 556 | 529 | 504 | 481 | | | | | | 459 | 437 | 416 | 395 | 366 | 337 | 308 | 281 | 258 | 238 | 219 | 202 | 187 | 173 | 161 | 150 | | 20LH06 | 15 | 20 | 31650 | 1233
606 | 1186
561 | 1144
521 | 1084
477 | 1018
427 | 952
386 | 894
351 | 840
320 | 790
292 | 745
267 | 703
246 | 666
226 | 631
209 | 598
192 | 568
178 | 541
165 | | 20LH07 | 17 | 20 | 33750 | 1317 | 1267 | 1221 | 1179 | 1140 | 1066 | 1000 | 940 | 885 | 834 | 789 | 745 | 706 | 670 | 637 | 606 | | | | | | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | 187 | | 20LH08 | 19 | 20 | 34800 | 1362
669 | 1309
619 |
1263
575 | 1219
536 | 1177
500 | 1140
468 | 1083
428 | 1030
395 | 981
365 | 931
336 | 882
309 | 837
285 | 795
262 | 754
242 | 718
225 | 685
209 | | 20LH09 | 21 | 20 | 38100 | 1485 | 1429 | 1377 | 1329 | 1284 | 1242 | 1203 | 1167 | 1132 | 1068 | 1009 | 954 | 904 | 858 | 816 | 775 | | 0011140 | 00 | 00 | 44400 | 729 | 675 | 626 | 581 | 542 | 507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | 227 | | 20LH10 | 23 | 20 | 41100 | 1602
786 | 1542
724 | 1486
673 | 1434
626 | 1386
585 | 1341
545 | 1297
510 | 1258
479 | 1221
448 | 1186
411 | 1122
377 | 1060
346 | 1005
320 | 954
296 | 906
274 | 862
254 | | | Approx. Wt | Ba
Depth | sed on | | | | | | | | | | | | oot (p | lf) | | | | | |----------------------|---------------------------|--------------------|-----------------|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------|--------------------|--------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------| | Joist
Designation | in Lbs. Per
Linear Ft. | in
inches | in L
Betw | bs.
reen | | | | | | | | LEAR : | SPAN II | | | | | | | | | 24LH03 | (Joists only) | 24 | 28 | | 33
513 | 34
508 | 35 504 | 36
484 | 37 460 | 38
439 | 39
418 | 400 | 41 382 | 42
366 | 43
351 | 44
336 | 45
322 | 46
310 | 47 298 | 48 | | 24LH03 | 11 | 24 | 172 | 250 | 235 | 226 | 218 | 204 | 188 | 439
175 | 162 | 400
152 | 141 | 132 | 124 | 116 | 109 | 102 | 96 | 90 | | 24LH04 | 12 | 24 | 21 ⁻ | 150 | 628
288 | 597
265 | 568
246 | 540
227 | 514
210 | 490
195 | 468
182 | 447
169 | 427
158 | 409
148 | 393
1 <mark>38</mark> | 376
130 | 361
122 | 346
114 | 333
107 | 32
10 | | 24LH05 | 13 | 24 | 220 | 650 | 673 | 669 | 660 | 628 | 598 | 570 | 544 | 520 | 496 | 475 | 456 | 436 | 420 | 403 | 387 | 37 | | 24LH06 | 16 | 24 | 304 | 150 | 308
906 | 297
868 | 285
832 | 795 | 756 | 720 | 210
685 | 196
655 | 182
625 | 598 | 160
571 | 150
546 | 522 | 132
501 | 480 | 46 | | 24LH07 | 17 | 24 | 334 | 150 | 411
997 | 382
957 | 356
919 | 331
882 | 306
847 | 284
811 | 263
774 | 245
736 | 702 | 211
669 | 1 <mark>97</mark>
639 | 184
610 | 172
583 | 161
559 | 1 <mark>52</mark>
535 | 14
51 | | 24LH08 | 18 | 24 | 35 | 700 | 452
1060 | 421
1015 | 393
973 | 367
933 | 343
895 | 320
858 | 297
817 | 276
780 | 257
745 | 239
712 | 223
682 | 208
652 | 1 <mark>95</mark>
625 | 182
600 | 171
576 | 16
55 | | 24LH09 | 21 | 24 | 120 | 000 | 480
1248 | 447
1212 | 416
1177 | 388
1146 | 362
1096 | 338
1044 | 314
994 | 292
948 | 272
903 | 254
861 | 238
822 | 222
786 | 208
751 | 1 <mark>96</mark>
720 | 1 <mark>84</mark>
690 | 17
66 | | | | | | | 562 | 530 | 501 | 460 | 424 | 393 | 363 | 337 | 313 | 292 | 272 | 254 | 238 | 223 | 209 | 19 | | 24LH10 | 23 | 24 | | 100 | 1323
596 | 1284
559 | 1248
528 | 1213
500 | 1182
474 | 1152
439 | 1105
406 | 1053
378 | 1002
351 | 955
326 | 912
304 | 873
285 | 834
266 | 799
249 | 766
234 | 73
22 | | 24LH11 | 25 | 24 | 468 | 300 | 1390
624 | 1350
588 | 1312
555 | 1276
525 | 1243
498 | 1210
472 | 1180
449 | 1152
418 | 1101
388 | 1051
361 | 1006
337 | 963
315 | 924
294 | 885
276 | 850
259 | 81
24 | | 0011105 | - 10 | | 33- | | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 5 | | 28LH05 | 13 | 28 | 210 | 000 | 505
219 | 484
205 | 465
192 | 445
180 | 429
169 | 412
159 | 397
150 | 382
142 | 367
133 | 355
126 | 342
119 | 330
113 | 319
107 | 309
102 | 298
97 | 28
9 | | 28LH06 | 16 | 28 | 279 | 900 | 672
289 | 643
270 | 618
253 | 592
238 | 568
223 | 546
209 | 525
197 | 505
186 | 486
175 | 469
166 | 451
156 | 436
148 | 421
140 | 406
133 | 393
126 | 37 | | 28LH07 | 17 | 28 | 31 | 500 | 757 | 726 | 696 | 667 | 640 | 615 | 591 | 568 | 547 | 528 | 508 | 490 | 474 | 457 | 442 | 42 | | 28LH08 | 18 | 28 | 33 | 750 | 326
810 | 305
775 | 285
744 | 267
712 | 251
684 | 236
657 | 630 | 209
604 | 197
580 | 186
556 | 176
535 | 1 <mark>66</mark>
516 | 1 <u>58</u>
496 | 150
478 | 142
462 | 44 | | 28LH09 | 21 | 28 | 41 | 550 | 348
1000 | 325
958 | 305
918 | 285
879 | 268
844 | 252
810 | 236
778 | 748 | 209
721 | 196
694 | 185
669 | 175
645 | 1 <mark>65</mark>
622 | 156
601 | 148
580 | 14
56 | | 28LH10 | 23 | 28 | 454 | 150 | 428
1093 | 400
1056 | 375
1018 | 351
976 | 329
937 | 309
900 | 291
864 | 274
831 | 258
799 | 243
769 | 228
742 | 216
715 | 204
690 | 193
666 | 1 <mark>83</mark>
643 | 62 | | 28LH11 | 25 | 28 | | 750 | 466
1170 | 439
1143 | 414
1104 | 388
1066 | 364
1023 | 342
982 | 322
943 | 303
907 | 285
873 | 269
841 | 255
810 | 241
781 | 228
753 | 215
727 | 204
702 | 19 | | - | | | | | 498 | 475 | 448 | 423 | 397 | 373 | 351 | 331 | 312 | 294 | 278 | 263 | 249 | 236 | 223 | 2 | | 28LH12 | 27 | 28 | | 550 | 1285
<u>545</u> | 1255
520 | 1227
496 | 1200
476 | 1173
454 | 1149
435 | 1105
408 | 1063
383 | 1023
361 | 984
340 | 948
321 | 913
303 | 880
285 | 849
270 | 819
256 | 79
24 | | 28LH13 | 30 | 28 | 558 | 300 | 1342
569 | 1311
543 | 1281
518 | 1252
495 | 1224
472 | 1198
452 | 1173
433 | 1149
415 | 1126
396 | 1083
373 | 1041
352 | 1002
332 | 964
314 | 930
297 | 897
281 | 86
26 | | | | | 38-46 | 47-48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 6 | | 32LH06 | 14 | 32 | 25050 | 25050 | 507
211 | 489
199 | 472
189 | 456
179 | 441
169 | 426
1 <mark>61</mark> | 412
153 | 399
145 | 385
138 | 373
131 | 363
125 | 351
119 | 340
114 | 330
108 | 321
104 | 31
9 | | 32LH07 | 16 | 32 | 28200 | 28200 | 568
235 | 549
223 | 529
211 | 511
200 | 493
189 | 477
179 | 462
170 | 447
162 | 432
154 | 418
146 | 406
140 | 393
133 | 381
127 | 370
121 | 360
116 | 34
11 | | 32LH08 | 17 | 32 | 30600 | 30600 | 616
255 | 595
242 | 574
229 | 553
216 | 535
205 | 517
194 | 499
184 | 483
175 | 468
167 | 453
159 | 439
151 | 426
144 | 412
137 | 400
131 | 388
125 | 37 | | 32LH09 | 21 | 32 | 38400 | 38400 | 774 | 747 | 720 | 694 | 670 | 648 | 627 | 606 | 586 | 568 | 550 | 534 | 517 | 502 | 487 | 47 | | 32LH10 | 21 | 32 | 42450 | 42450 | 319
856 | 302
825 | 285
796 | 270
768 | 256
742 | 243
717 | 230
693 | 219
667 | 208
645 | 198
624 | 1 <mark>89</mark>
603 | 1 <mark>80</mark>
583 | 172
564 | 164
546 | 1 <u>57</u>
529 | 14
5° | | 32LH11 | 24 | 32 | 46500 | 46500 | 352
937 | 903 | 315
870 | 297
840 | 282
811 | 267
783 | 254
757 | 732 | 709 | 217
687 | 206
664 | 1 <mark>96</mark>
643 | 1 <mark>86</mark>
624 | 178
604 | 1 <mark>69</mark>
585 | 16
56 | | 32LH12 | 27 | 32 | 54600 | 54600 | 385
1101 | 363
1068 | 343
1032 | 325
996 | 308
961 | 292
928 | 277
897 | 263
867 | 251
838 | 239
811 | 227
786 | 216
762 | 206
738 | 196
715 | 187
694 | 17
67 | | 32LH13 | 30 | 32 | 60900 | 60900 | 450
1225 | 428
1201 | 406
1177 | 384
1156 | 364 | 345
1072 | 327
1035 | 311
999 | 295
964 | 281
931 | 267
900 | 255
871 | 243
843 | 232
816 | 221
790 | 21
76 | | | | | | | 500 | 480 | 461 | 444 | 1113
420 | 397 | 376 | 354 | 336 | 319 | 304 | 288 | 275 | 262 | 249 | 23 | | 32LH14 | 33 | 32 | 62700 | 62700 | 1264
515 | 1239
495 | 1215
476 | 1192
458 | 1170
440 | 1149
417 | 1107
395 | 1069
374 | 1032
355 | 997
337 | 964
321 | 933
304 | 903
290 | 874
276 | 846
264 | 82
25 | | 32LH15 | 35 | 32 | 64800 | 64800 | 1305
532 | 1279
511 | 1255
492 | 1231
473 | 1207
454 | 1186
438 | 1164
422 | 1144
407 | 1125
393 | 1087
374 | 1051
355 | 1017
338 | 984
322 | 952
306 | 924
292 | 89
27 | | 0011107 | 10 | 00 | 42-46 | 47-56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 7 | | 36LH07 | 16 | 36 | 25200 | 25200 | 438
177 | 424
168 | 411
160 | 399
1 53 | 387
146 | 376
140 | 366
134 | 355
128 | 345
122 | 336
117 | 327
112 | 318
107 | 310
103 | 301
99 | 294
95 | 28
9 | | 36LH08 | 18 | 36 | 27750 | 27750 | 481
194 | 466
185 | 453
176 | 439
168 | 426
160 | 414
153 | 402
146 | 390
140 | 379
134 | 369
128 | 358
123 | 349
118 | 340
113 | 331
109 | 322
104 | 31
10 | | 36LH09 | 21 | 36 | 35550 | 35550 | 616
247 | 597
235 | 579
224 | 561
214 | 544
204 | 528
195 | 513
186 | 499
179 | 484
171 | 471
163 | 459
157 | 445
150 | 433
144 | 423
138 | 412
133 | 40 | | 36LH10 | 21 | 36 | 39150 | 39150 | 681 | 660 | 639 | 619 | 601 | 583 | 567 | 550 | 535 | 520 | 507 | 492 | 480 | 466 | 454 | 44 | | 36LH11 | 23 | 36 | 42750 | 42750 | 273
742 | 720 | 248
697 | 236
676 | 225
657 | 215
637 | 206
618 | 197
601 | 188
583 | 180
567 | 173
552 | 165
537 | 1 <u>59</u>
522 | 152
508 | 146
495 | 48 | | 36LH12 | 25 | 36 |
51150 | 51150 | 297
889 | 283
862 | 269
835 | 257
810 | 246
784 | 762 | 739 | 214
717 | 205
696 | 196
675 | 188
655 | 1 <mark>80</mark>
636 | 173
618 | 166
600 | 1 <u>59</u>
583 | 15
56 | | 36LH13 | 30 | 36 | 60150 | 60150 | 354
1045 | 338
1012 | 322
981 | 307
951 | 292
922 | 279
894 | 267
868 | 255
843 | 243
819 | 232
796 | 222
774 | 213
753 | 204
732 | 195
712 | 187
694 | 67 | | | | | | | 415 | 395 | 376 | 359 | 342 | 327 | 312 | 298 | 285 | 273 | 262 | 251 | 240
802 | 231
780 | 222
757 | 2 ⁻ | | 36LH14 | 36 | 36 | 66300 | 66300 | 1150 | 1122 | 1002 | 1()50 | | gai | | | | | | | | | | | | 36LH14
36LH15 | 36 | 36
36 | 66300
69900 | 66300 | 1152
456
1213 | 1132
434
1192 | 1093
412
1171 | 1059
392
1153 | 1024
373
1116 | 991
356
1081 | 961
339
1047 | 931
323
1015 | 903
309
984 | 876
295
955 | 850
283
927 | 826
270
900 | 259
874 | 247
850 | 237
826 | 22
80 | | Joist | Annre: \\/ | | | LOAD* | Maxim | | 0.0 0. | ongar | Load | 3 0110 | *********** | ouna | o per L | incar i | oot (p | ,,, | | | | | |----------------------|-----------------------------|-------------|---------------|----------------------|------------------|----------------|--------------------------|--------------------|------------------|--------------------------|-------------|-------------|--------------------------|-------------|--------------------------|--------------------|------------|------------|------------|-----| | Joist
Designation | Approx. Wt in Lbs. Per | Depth
in | in L | _bs. | | | | | | | CLE | AR SF | AN IN | FEET | | | | | | | | | Linear Ft.
(Joists Only) | inches | Betv
47-59 | veen
60-64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 8 | | 40LH08 | 16 | 40 | 24900 | 24900 | 381
150 | 370
144 | 361
138 | 351
132 | 342
127 | 333
122 | 325
117 | 316
112 | 309
108 | 301
104 | 294
100 | 288
97 | 280
93 | 274
90 | 267
86 | 20 | | 40LH09 | 21 | 40 | 32700 | 32700 | 498
196 | 484
188 | 472
180 | 459
173 | 447
166 | 436
160 | 424
153 | 414
147 | 403
141 | 394
136 | 384
131 | 375
126 | 366
122 | 358
118 | 349
113 | 3 | | 40LH10 | 21 | 40 | 36000 | 36000 | 550
216 | 535
207 | 520
198 | 507
190 | 493
183 | 481
176 | 469
169 | 457
162 | 445
156 | 435
150 | 424
144 | 414
139 | 403
134 | 393
129 | 382
124 | 3 | | 40LH11 | 22 | 40 | 39300 | 39300 | 598
234 | 582
224 | 567
215 | 552
207 | 537
198 | 523
190 | 510
183 | 498
176 | 484
169 | 472
163 | 462
157 | 450
151 | 439
145 | 429
140 | 418
135 | 4 | | 40LH12 | 25 | 40 | 47850 | 47850 | 729
285 | 708
273 | 688
261 | 670
251 | 652
241 | 636
231 | 619
222 | 603
213 | 588
205 | 573
197 | 559
189 | 546
182 | 532
176 | 519
169 | 507
163 | 4 | | 40LH13 | 30 | 40 | 56400 | 56400 | 859
334 | 835
320 | 813
307 | 792
295 | 771
283 | 750
271 | 730
260 | 712
250 | 694
241 | 676
231 | 660 | 643 | 628
207 | 613
199 | 598
192 | 5 | | 40LH14 | 35 | 40 | 64500 | 64500 | 984
383 | 957
367 | 930
351 | 904
336 | 880
323 | 856
309 | 834
297 | 813
285 | 792
273 | 772
263 | 753
252 | 735
243 | 717
233 | 699
225 | 682
216 | 6 | | 40LH15 | 36 | 40 | 72150 | 72150 | 1101
427 | 1068
408 | 1036
390 | 1006
373 | 978
357 | 949
342 | 924
328 | 898
315 | 874
302 | 850
290 | 828
279 | 807
268 | 786
258 | 766
248 | 747
239 | 7 | | 40LH16 | 42 | 40 | 79500 | 79500 | 1212
469 | 1194
455 | 1176
441 | 1158
428 | 1141
416 | 1126
404 | 1095
387 | 1065
371 | 1036
356 | 1009
342 | 982
329 | 957
316 | 933
304 | 909 | 886
282 | 8 | | | | | 52-59 | 60-72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | - 8 | | 44LH09 | 19 | 44 | 30000 | 30000 | 408 | 397 | 388 | 379 | 370 | 363 | 354 | 346 | 339 | 331 | 324 | 316 | 310 | 303 | 297 | 2 | | 44LH10 | 21 | 44 | 33150 | 33150 | 158
450 | 152
439 | 146
429 | 141
418 | 136
408 | 1 <mark>31</mark>
399 | 390 | 122
381 | 118
373 | 114
364 | 110
357 | 106
349 | 103
342 | 99
334 | 96
327 | 3 | | 44LH11 | 22 | 44 | 35850 | 35850 | 174
487 | 168
475 | 1 <mark>62</mark>
465 | 1 <u>55</u>
453 | 150
442 | 144
433 | 139
423 | 134
414 | 1 <mark>30</mark>
403 | 125
396 | 1 <mark>21</mark>
387 | 117
378 | 113
370 | 110
363 | 106
354 | 3 | | 44LH12 | 25 | 44 | 44400 | 44400 | 188
603 | 181
589 | 175
574 | 168
561 | 162
547 | 157
534 | 151
520 | 146
508 | 140
496 | 136
484 | 131
472 | 127
462 | 123
450 | 119
439 | 115
430 | 4 | | 44LH13 | 30 | 44 | 52650 | 52650 | 232
715 | 224 699 | 215
681 | 207
666 | 200
649 | 192
634 | 185
619 | 179
606 | 172
592 | 166
579 | 160
565 | 1 <u>55</u>
553 | 149
541 | 144
529 | 139
519 | 5 | | 44LH14 | 31 | 44 | 60600 | 60600 | 275
823 | 265
801 | 254
780 | 246
759 | 236
739 | 228
721 | 703 | 212
685 | 205
669 | 198
654 | 1 <mark>91</mark>
637 | 185
622 | 179
609 | 173
594 | 167
580 | 5 | | 44LH15 | 36 | 44 | 70500 | 70500 | 315
958 | 302
934 | 291
912 | 279
889 | 268
868 | 259
847 | 249
826 | 805 | 231
786 | 768 | 215
750 | 732 | 200
714 | 193
699 | 187
682 | 6 | | 44LH16 | 42 | 44 | 81300 | 81300 | 366
1105 | 352
1078 | 339
1051 | 326
1026 | 314
1002 | 303
978 | 292
955 | 281
933 | 912 | 261
891 | 252
870 | 243
852 | 832 | 227
814 | 796 | 7 | | 44LH17 | 47 | 44 | 87300 | 87300 | 421
1185 | 405
1170 | 390
1153 | 375
1138 | 362
1125 | 1098 | 336
1072 | 324
1048 | 313
1024 | 1000 | 978
978 | 957 | 936
936 | 915 | 895
895 | 8 | | | | | 56-59 | 60-80 | 450
81 | 438
82 | 426
83 | 415
84 | 405
85 | 390
86 | 376
87 | 363
88 | 351
89 | 338
90 | 327
91 | 316
92 | 305
93 | 295
94 | 285
95 | 2 | | 48LH10 | 21 | 48 | 30000 | 30000 | 369 | 361 | 354 | 346 | 339 | 331 | 325 | 318 | 312 | 306 | 300 | 294 | 288 | 282 | 277 | 2 | | 48LH11 | 22 | 48 | 32550 | 32550 | 399
450 | 136
390 | 132
382 | 373 | 123
366 | 358
100 | 351 | 343
400 | 108
337 | 330 | 324
110 | 99
318 | 96
312 | 93
306 | 300 | 2 | | 48LH12 | 25 | 48 | 41100 | 41100 | 152
504 | 493
495 | 142
483 | 137
472 | 133
462 | 129
451 | 125
442 | 433
454 | 117
424 | 113
415 | 408 | 106
399 | 391 | 384
100 | 97
376 | 3 | | 48LH13 | 29 | 48 | 49200 | 49200 | 191
603 | 185
589 | 179
576 | 564 | 167
552 | 161
540 | 156
529 | 151
517 | 147
507 | 142
498 | 138
487 | 133
477 | 129
468 | 126
459 | 450
450 | 4 | | 48LH14 | 32 | 48 | 58050 | 58050 | 712 | 696 | 213
681 | 206
666 | 199
651 | 193
637 | 624
620 | 610 | 175
598 | 170
585 | 164
574 | 159
562 | 154
550 | 150
540 | 145
529 | 5 | | 48LH15 | 36 | 48 | 66750 | 66750 | 269
817 | 799 | 251
781 | 765
279 | 748 | 732 | 717 | 702
244 | 206
687 | 199
672 | 193
658
221 | 187
645 | 633 | 176
619 | 607 | 5 | | 48LH16 | 42 | 48 | 76950 | 76950 | 308
943 | 922 | 901 | 882
200 | 269
864 | 260
844 | 252
826 | 810 | 792 | 777
263 | 760 | 745
247 | 730 | 715 | 702 | 6 | | | | 1 | | | 355 | 343 | 331 | 320 | 310 | 299 | 289 | 280 | 271 | 263 | 255 | 247 | 239 | 232 | 225 | 2 | ^{*} The safe factored uniform load for the clear spans shown in the Safe Load Column is equal to (Safe Load) / (Clear span + 0.67). (The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed). In no case shall the safe factored uniform load, for clear spans less than the minimum clear span shown in the Safe Load Column, exceed the uniform load calculated for the minimum clear span listed in the Safe Load Column. To solve for <u>live</u> loads for clear spans shown in the Safe Load Column (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load Table by the (the shortest clear span shown in the Load Table + 0.67 feet)² and divide by (the actual clear span + 0.67 feet)². The live load shall <u>not</u> exceed the safe uniform load. # STANDARD ASD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 25, 1983 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of **ASD LH-Series** Steel Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. The **RED** figures in this load table are the nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the **RED** figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/8 inch per foot. If pitch exceeds this standard, the load table
does <u>not</u> apply. Sloped parallel-chord joists shall use span as defined by the length along the slope. Where the joist span is in the **RED SHADED** area of the load table, the row of bridging nearest the midspan shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. Where the joist span is in the **BLUE SHADED** area of the load table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} = \textbf{RED}$ figure in the Load Table, and L = (clear span + 0.67) in feet. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas. The top chords are considered as being stayed laterally by floor slab or roof deck. The approximate joist weights per linear foot shown in these tables do <u>not</u> include accessories. | | | Based | STANDARD I | | | | | | | | | | | oot (p | olf) | | | | | |-------------|---------------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------------------|------------| | | Approx. Wt | Depth | SAFE LOAD* | | | | | | | | | | | | | | | | | | Joist | in Lbs. Per | in | in Lbs. | | | | | | | CLEA | R SPA | AN IN I | FEET | | | | | | | | Designation | Linear Ft | inches | Between | | | | | | | | | | | | | | | | | | | (Joists only) | | 21-24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | | | | | 18LH02 | 10 | 18 | 12000 | 468 | 442 | 418 | 391 | 367 | 345 | 324 | 306 | 289 | 273 | 259 | 245 | | | | | | | | | | 313 | 284 | 259 | 234 | 212 | 193 | 175 | 160 | 147 | 135 | 124 | 114 | | | | | | 18LH03 | 11 | 18 | 13300 | 521 | 493 | 467 | 438 | 409 | 382 | 359 | 337 | 317 | 299 | 283 | 267 | | | | | | | | | | 348 | 317 | 289 | 262 | 236 | 213 | 194 | 177 | 161 | 148 | 136 | 124 | | | | | | 18LH04 | 12 | 18 | 15500 | 604 | 571 | 535 | 500 | 469 | 440 | 413 | 388 | 365 | 344 | 325 | 308 | | | | | | | | | | 403 | 367 | 329 | 296 | 266 | 242 | 219 | 200 | 182 | 167 | 153 | 141 | | | | | | 18LH05 | 15 | 18 | 17500 | 684 | 648 | 614 | 581 | 543 | 508 | 476 | 448 | 421 | 397 | 375 | 355 | | | | | | | | | | 454 | 414 | 378 | 345 | 311 | 282 | 256 | 233 | 212 | 195 | 179 | 164 | | | | | | 18LH06 | 15 | 18 | 20700 | 809 | 749 | 696 | 648 | 605 | 566 | 531 | 499 | 470 | 443 | 418 | 396 | | | | | | | | | | 526 | 469 | 419 | 377 | 340 | 307 | 280 | 254 | 232 | 212 | 195 | 180 | | | | | | 18LH07 | 17 | 18 | 21500 | 840 | 809 | 780 | 726 | 678 | 635 | 595 | 559 | 526 | 496 | 469 | 444 | | | | | | | | | | 553 | 513 | 476 | 428 | 386 | 349 | 317 | 288 | 264 | 241 | 222 | 204 | | | | | | 18LH08 | 19 | 18 | 22400 | 876 | 843 | 812 | 784 | 758 | 717 | 680 | 641 | 604 | 571 | 540 | 512 | | | | | | | | | | 577 | 534 | 496 | 462 | 427 | 387 | 351 | 320 | 292 | 267 | 246 | 226 | | | | | | 18LH09 | 21 | 18 | 24000 | 936 | 901 | 868 | 838 | 810 | 783 | 759 | 713 | 671 | 633 | 598 | 566 | | | | | | | | | | 616 | 571 | 527 | 491 | 458 | 418 | 380 | 346 | 316 | 289 | 266 | 245 | | | | | | | | | 22-24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | | 20LH02 | 10 | 20 | 11300 | 442 | 437 | 431 | 410 | 388 | 365 | 344 | 325 | 307 | 291 | 275 | 262 | 249 | 237 | 225 | 215 | | | | | | 306 | 303 | 298 | 274 | 250 | 228 | 208 | 190 | 174 | 160 | 147 | 136 | 126 | 117 | 108 | 101 | | 20LH03 | 11 | 20 | 12000 | 469 | 463 | 458 | 452 | 434 | 414 | 395 | 372 | 352 | 333 | 316 | 299 | 283 | 269 | 255 | 243 | | 0011104 | 4.0 | | 1.1700 | 337 | 333 | 317 | 302 | 280 | 258 | 238 | 218 | 200 | 184 | 169 | 156 | 143 | 133 | 123 | 114 | | 20LH04 | 12 | 20 | 14700 | 574 | 566 | 558 | 528 | 496 | 467 | 440 | 416 | 393 | 372 | 353 | 335 | 318 | 303 | 289 | 275 | | 0011105 | 4.4 | 00 | 45000 | 428 | 406 | 386 | 352 | 320 | 291 | 265 | 243 | 223 | 205 | 189 | 174 | 161 | 149 | 1 <mark>39</mark>
336 | 129
321 | | 20LH05 | 14 | 20 | 15800 | 616
459 | 609
437 | 602
416 | 595
395 | 571
366 | 544
337 | 513
308 | 484
281 | 458
258 | 434
238 | 411
219 | 390
202 | 371
187 | 353
173 | 161 | 321
150 | | 20LH06 | 15 | 20 | 21100 | 822 | 791 | 763 | 723 | 679 | 635 | 596 | 560 | 527 | 497 | 469 | 444 | 421 | 399 | 379 | 361 | | 20LH06 | 15 | 20 | 21100 | 606 | | 521 | 477 | 427 | | | | 292 | | 246 | 226 | 209 | | 178 | 165 | | 20LH07 | 17 | 20 | 22500 | 878 | 561
845 | 814 | 786 | 760 | 386
711 | 351
667 | 320
627 | 590 | 267
556 | 526 | 497 | 471 | 192
447 | 425 | 404 | | 20LH0/ | 17 | 20 | 22500 | 647 | 599 | 556 | 518 | 484 | 438 | 398 | 362 | 331 | 303 | 278 | 256 | 236 | 218 | 202 | 187 | | 20LH08 | 19 | 20 | 23200 | 908 | 873 | 842 | 813 | 785 | 760 | 722 | 687 | 654 | 621 | 588 | 558 | 530 | 503 | 479 | 457 | | ZULTUĞ | 19 | 20 | 23200 | 669 | 619 | 575 | 536 | 500 | 468 | 428 | 395 | 365 | 336 | 309 | 285 | 262 | 242 | 225 | 209 | | 20LH09 | 21 | 20 | 25400 | 990 | 953 | 918 | 886 | 856 | 828 | 802 | 778 | 755 | 712 | 673 | 636 | 603 | 572 | 544 | 517 | | 2011109 | ۷۱ | 20 | 20400 | 729 | 675 | 626 | 581 | 542 | o∠o
507 | 475 | 437 | 399 | 366 | 336 | 309 | 285 | 264 | 244 | 227 | | 20LH10 | 23 | 20 | 27400 | 1068 | 1028 | 991 | 956 | 924 | 894 | 865 | 839 | 814 | 791 | 748 | 707 | 670 | 636 | 604 | 575 | | 2011110 | 20 | 20 | 21400 | 786 | 724 | 673 | 626 | 585 | 545 | 510 | 479 | 448 | 411 | 377 | 346 | 320 | 296 | 274 | 254 | | | | Bas | STAND/
ed on a 50 ks | | | | | | | | | | | | plf) | | | | | |----------------------|-----------------------------------|-----------------------|---------------------------------|---------------------|-------------------|-------------------|-----------------------|--------------------------|--------------------|-------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------|--------------------------|-------------------|--------------------------|--------------------------| | Joist
Designation | Approx. Wt in Lbs. Per Linear Ft. | Depth
in
inches | SAFELOAD*
in Lbs.
Between | | | | | | | CLE | AR SP | AN IN I | EET | | | | | | | | | (Joists only) | | 28-32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | | 24LH03 | 11 | 24 | 11500 | 342 | 339 | 336 | 323 | 307 | 293 | 279 | 267 | 255 | 244 | 234 | 224 | 215 | 207 | 199 | 191 | | 24LH04 | 12 | 24 | 14100 | 235
419
288 | 398
265 | 379
246 | 360
227 | 343
210 | 327
195 | 312
182 | 298
169 | 285
158 | 132
273
148 | 124
262
138 | 251
130 | 109
241
122 | 231
114 | 96
222
107 | 90
214
101 | | 24LH05 | 13 | 24 | 15100 | 449
308 | 446
297 | 440
285 | 419
264 | 399
244 | 380
226 | 363
210 | 347
196 | 331
182 | 317
171 | 304
160 | 291
150 | 280
141 | 269
132 | 258
124 | 248
117 | | 24LH06
24LH07 | 16
17 | 24 | 20300 | 604
411 | 579
382
638 | 555
356
613 | 530
331
588 | 504
306
565 | 480
284
541 | 457
263
516 | 437
245
491 | 417
228
468 | 399
211
446 | 381
197
426 | 364
184
407 | 348
172
389 | 334
161
373 | 320
152
357 | 307
142
343 | | 24LH07
24LH08 | 17 | 24 | 23800 | 665
452
707 | 638
421
677 | 393
649 | 367
622 | 343
597 | 320
572 | 297
545 | 276
520 | 257
497 | 239
475 | 223
455 | 208
435 | 195
417 | 182
400 | 357
171
384 | 343
161
369 | | 24LH09 | 21 | 24 | 28000 | 480
832 | 447
808 | 416
785 | 388
764 | 362
731 | 338
696 | 314
663 | 292
632 | 272
602 | 254
574 | 238
548 | 222
524 | 208
501 | 196
480 | 184
460 | 173
441 | | 24LH10 | 23 | 24 | 29600 | 562
882 | 530
856 | 501
832 | 460
809 | 424
788 | 393
768 | 363
737 | 337
702 | 313
668 | 292
637 | 272
608 | 254
582 | 238
556 | 223 533 | 209
511 | 1 <mark>96</mark>
490 | | 24LH11 | 25 | 24 | 31200 | 596
927 | 559
900 | 528
875 | 851 | 829 | 807 | 406
787 | 768 | 734 | 326
701 | 304
671 | 642 | 266
616 | 590
570 | 567 | 544 | | | | | 33-40 | 624
41 | 588
42 | 555
43 | 525
44 | 498
45 | 472
46 | 449
47 | 418
48 | 388
49 | 361
50 | 337
51 | 315
52 | 294
53 | 276
54 | 259
55 | 243
56 | | 28LH05 | 13 | 28 | 14000 | 337 | 323 | 310 | 297 | 286 | 275 | 265 | 255 | 245 | 237 | 228 | 220 | 213 | 206 | 199 | 193 | | 28LH06 | 16 | 28 | 18600 | 219
448
289 | 429
270 | 192
412 | 395 | 379
223 | 159
364
209 | 350
107 | 337 | 133
324 | 313 | 301
156 | 113
291 | 107
281 | 102
271 | 97
262 | 92
253 | | 28LH07 | 17 | 28 | 21000 | 505
326 | 270
484
305 | 253
464
285 | 238
445
267 | 427
251 | 410
236 | 394
222 | 379
209 | 365
197 | 166
352
186 | 339
176 | 327
166 | 316
158 | 305
150 | 126
295
142 | 285
135 | | 28LH08 | 18 | 28 | 22500 | 540
348 | 517
325 | 496
305 | 475
285 | 456
268 | 438
252 | 420
236 | 403
222 | 387
209 | 371
196 | 357
185 | 344
175 | 331
165 | 319
156 | 308
148 | 297
140 | | 28LH09 | 21 | 28 | 27700 | 667
428 | 639
400 | 612
375 | 586
351 | 563
329 | 540
309 | 519
291 | 499
274 | 481
258 | 463
243 | 446
228 | 430
216 | 415
204 | 401
193 | 387
183 | 374
173 | |
28LH10 | 23 | 28 | 30300 | 729
466 | 704
439 | 679
414 | 651
388 | 625
364 | 600
342 | 576
322 | 554
303 | 533
285 | 513
269 | 495
255 | 477
241 | 460
228 | 444
215 | 429
204 | 415
193 | | 28LH11 | 25 | 28 | 32500 | 780
498 | 762
475 | 736
448 | 711
423 | 682
397 | 655
373 | 629
351 | 605
331 | 582
312 | 561
294 | 540
278 | 521
263 | 502
249 | 485
236 | 468
223 | 453
212 | | 28LH12 | 27 | 28 | 35700 | 857
<u>545</u> | 837
520 | 818
496 | 800
476 | 782
454 | 766
435 | 737
408 | 709
383 | 682
361 | 656
340 | 632
321 | 609
303 | 587
285 | 566
270 | 546
256 | 527
243 | | 28LH13 | 30 | 28 | 37200 | 895
569 | 874
543 | 854
518 | 835
495 | 816
472 | 799
452 | 782
433 | 766
415 | 751
396 | 722
373 | 694
352 | 668
332 | 643
314 | 620
297 | 598
281 | 577
266 | | 32LH06 | 14 | 32 | 38-46 47-48
16700 1670 | | 50 | 51 315 | 52 | 53 294 | 54 284 | 55 275 | 56 266 | 57 257 | 58 249 | 59 242 | 60 234 | 61 227 | 62 220 | 63 214 | 64 208 | | 32LH07 | 16 | 32 | 18800 1880 | 211 | 199
366 | 189
353 | 179
341 | 1 <mark>69</mark>
329 | 161
318 | 153
308 | 145
298 | 1 <mark>38</mark>
288 | 1 <mark>31</mark>
279 | 125
271 | 119
262 | 114
254 | 108
247 | 104
240 | 99
233 | | 32LH08 | 17 | 32 | 20400 2040 | | 223
397 | 211
383 | 200 369 | 189
357 | 179
345 | 170
333 | 1 <mark>62</mark>
322 | 1 <u>54</u>
312 | 146
302 | 140
293 | 133
284 | 1 <mark>27</mark>
275 | 121
267 | 116
259 | 111
252 | | 32LH09 | 21 | 32 | 25600 2560 | 255
0 516
319 | 498
302 | 480 | 216
463
270 | 205
447 | 194
432
243 | 184
418
230 | 404 | 391
208 | 379
198 | 367
189 | 356
180 | 137
345
172 | 335
164 | 325
157 | 120
315
149 | | 32LH10 | 21 | 32 | 28300 2830 | | 550
332 | 285
531
315 | 512
297 | 256
495
282 | 478
267 | 462
254 | 219
445
240 | 430
228 | 416
217 | 402
206 | 389
196 | 376
186 | 364
178 | 353
169 | 342
162 | | 32LH11 | 24 | 32 | 31000 3100 | | 602
363 | 580
343 | 560
325 | 541
308 | 522
292 | 505
277 | 488
263 | 473
251 | 458
239 | 443
227 | 429
216 | 416
206 | 403
196 | 390
187 | 378
179 | | 32LH12 | 27 | 32 | 36400 3640 | | 712
428 | 688
406 | 664
384 | 641
364 | 619
345 | 598
327 | 578
311 | 559
295 | 541
281 | 524
267 | 508
255 | 492
243 | 477
232 | 463
221 | 449
211 | | 32LH13 | 30 | 32 | 40600 4060 | 0 817
500 | 801
480 | 785
461 | 771
444 | 742
420 | 715
397 | 690
376 | 666
354 | 643
336 | 621
319 | 600
304 | 581
288 | 562
275 | 544
262 | 527
249 | 511
238 | | 32LH14 | 33 | 32 | 41800 4180 | 0 843
515 | 826
495 | 810
476 | 795
458 | 780
440 | 766
417 | 738
395 | 713
374 | 688
355 | 665
337 | 643
321 | 622
304 | 602
290 | 583
276 | 564
264 | 547
251 | | 32LH15 | 35 | 32 | 43200 4320 | 532 | 853
511 | 837
492 | 821
473 | 805
454 | 791
438 | 776
422 | 763
407 | 750
393 | 725
374 | 701
355 | 678
338 | 656
322 | 635
306 | 616
292 | 597
279 | | 36LH07 | 16 | 36 | 42-46 47-5 0 1680 | | 58 283 | 59 274 | 60 266 | 61 258 | 62 251 | 63 244 | 64 237 | 65 230 | 66 224 | 67 218 | 68 212 | 69 207 | 70 201 | 71 196 | 72 | | 36LH07 | 18 | 36 | 18500 1850 | 177 | 168
311 | 160
302 | 153
293 | 258
146
284 | 140
276 | 134
268 | 128
260 | 122
253 | 117
246 | 112
239 | 107
233 | 103
227 | 99
221 | 95
215 | 91
209 | | 36LH09 | 21 | 36 | 23700 2370 | 194 | 185
398 | 176
386 | 1 <mark>68</mark> | 1 <mark>60</mark>
363 | 153
352 | 146
342 | 140
333 | 1 <mark>34</mark>
323 | 128
314 | 123
306 | 118
297 | 113
289 | 109
282 | 1 <mark>04</mark>
275 | 100
267 | | 36LH10 | 21 | 36 | 26100 2610 | 247
0 454 | 235
440 | 224
426 | 214
413 | 204
401 | 1 <u>95</u>
389 | 186
378 | 1 <u>79</u>
367 | 171
357 | 163
347 | 157
338 | 1 <u>50</u>
328 | 144
320 | 138
311 | 1 <mark>33</mark>
303 | 127
295 | | 36LH11 | 23 | 36 | 28500 2850 | | 480 | 465
260 | 236
451 | 438
246 | 425
224 | 412
204 | 197
401 | 389
305 | 378
106 | 173
368 | 358 | 348
170 | 339 | 330
150 | 322
152 | | 36LH12 | 25 | 36 | 34100 3410 | 297
0 593
354 | 283
575
338 | 269
557
322 | 257
540
307 | 246
523
292 | 508
279 | 493
267 | 214
478
255 | 205
464
243 | 196
450
232 | 188
437
222 | 180
424
213 | 173
412
204 | 166
400
195 | 389
187 | 378
179 | | 36LH13 | 30 | 36 | 40100 4010 | | 675
395 | 654
376 | 634
359 | 615 | 596
327 | 579
312 | 562
298 | 546
285 | 531
273 | 516
262 | 502
251 | 488
240 | 475
231 | 463
222 | 451
213 | | 36LH14 | 36 | 36 | 44200 4420 | 0 768
456 | 755
434 | 729
412 | 706
392 | 683
373 | 661
356 | 641
339 | 621
323 | 602
309 | 584
295 | 567
283 | 551
270 | 535
259 | 520
247 | 505
237 | 492
228 | | 36LH15 | 36 | 36 | 46600 4660 | | 795
464 | 781
448 | 769
434 | 744
413 | 721
394 | 698
375 | 677
358 | 656
342 | 637
327 | 618
312 | 600
299 | 583
286 | 567
274 | 551
263 | 536
252 | | | | | Based | STAN
on a 50 | | | | | ONGSF
h - Load | | | | | | ot (plf) | | | | | | |----------------------|---|-----------------------|----------------------|-----------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|----------------| | Joist
Designation | Approx. Wt
in Lbs. Per
Linear Ft. | Depth
in
inches | SAFE
in L
Betv | - | | | | | | | CLE | AR SP | AN IN F | EET | | | | | | | | | (Joists Only) | | 47-59 | 60-64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | | 40LH08 | 16 | 40 | 16600 | 16600 | 254
150 | 247
144 | 241
138 | 234
132 | 228
127 | 222
122 | 217
117 | 211
112 | 206
108 | 201
104 | 196
100 | 192
97 | 187
93 | 183
90 | 178
86 | 174
83 | | 40LH09 | 21 | 40 | 21800 | 21800 | 332
196 | 323
188 | 315
180 | 306
173 | 298
166 | 291
160 | 283
153 | 276
147 | 269
141 | 263
136 | 256
131 | 250
126 | 244
122 | 239
118 | 233
113 | 22
10 | | 40LH10 | 21 | 40 | 24000 | 24000 | 367
216 | 357
207 | 347
198 | 338
190 | 329
183 | 321
176 | 313
169 | 305
162 | 297
156 | 290
150 | 283
144 | 276
139 | 269
134 | 262
129 | 255
124 | 24
11 | | 40LH11 | 22 | 40 | 26200 | 26200 | 399
234 | 388
224 | 378
215 | 368
207 | 358
198 | 349
190 | 340
183 | 332
176 | 323
169 | 315
163 | 308
157 | 300
151 | 293
145 | 286
140 | 279
135 | 27
13 | | 40LH12 | 25 | 40 | 31900 | 31900 | 486
285 | 472
273 | 459
261 | 447
251 | 435
241 | 424
231 | 413
222 | 402
213 | 392
205 | 382
197 | 373
189 | 364
182 | 355
176 | 346
169 | 338
163 | 33
15 | | 40LH13 | 30 | 40 | 37600 | 37600 | 573
334 | 557
320 | 542
307 | 528
295 | 514
283 | 500
271 | 487
260 | 475
250 | 463
241 | 451
231 | 440
223 | 429
214 | 419
207 | 409
199 | 399
192 | 39 | | 40LH14 | 35 | 40 | 43000 | 43000 | 656
383 | 638
367 | 620
351 | 603
336 | 587
323 | 571
309 | 556
297 | 542
285 | 528
273 | 515
263 | 502
252 | 490
243 | 478
233 | 466
225 | 455
216 | 4 ² | | 40LH15 | 36 | 40 | 48100 | 48100 | 734
427 | 712
408 | 691
390 | 671
373 | 652
357 | 633
342 | 616
328 | 599
315 | 583
302 | 567
290 | 552
279 | 538
268 | 524
258 | 511
248 | 498
239 | 48 | | 40LH16 | 42 | 40 | 53000 | 53000 | 808
469 | 796
455 | 784
441 | 772
428 | 761
416 | 751
404 | 730
387 | 710
371 | 691
356 | 673
342 | 655
329 | 638
316 | 622
304 | 606
292 | 591
282 | 57 | | | | | 52-59 | 60-72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 8 | | 44LH09 | 19 | 44 | 20000 | 20000 | 272 | 265 | 259 | 253 | 247 | 242 | 236 | 231 | 226 | 221 | 216 | 211 | 207 | 202 | 198 | 19 | | 44LH10 | 21 | 44 | 22100 | 22100 | 300 | 1 <u>52</u>
293 | 146
286 | 141
279 | 136
272 | 131
266 | 127
260 | 122
254 | 118
249 | 243 | 238 | 233 | 103
228 | 99
223 | 96
218 | 2 | | 44LH11 | 22 | 44 | 23900 | 23900 | 174
325 | 168
317 | 162
310 | 302 | 150
295 | 289 | 139
282 | 134
276 | 130
269 | 125
264 | 121
258 | 117
252 | 113
247 | 110
242 | 236 | 2: | | 44LH12 | 25 | 44 | 29600 | 29600 | 188
402 | 393 | 383 | 374 | 365 | 356 | 347 | 339 | 331 | 323 | 315 | 308 | 300 | 119
293 | 287 | 28 | | 44LH13 | 30 | 44 | 35100 | 35100 | 232
477 | 466
205 | 215
454 | 207
444 | 433 | 423 | 413 | 404 | 395 | 166
386 | 160
377 | 369 | 361 | 353 | 139
346 | 3: | | 44LH14 | 31 | 44 | 40400 | 40400 | 275
549 | 534 | 520
520 | 506
270 | 493
493 | 481
250 | 469
240 | 457 | 205
446 | 198
436
 191
425 | 185
415 | 406
200 | 173
396 | 387 | 3 | | 44LH15 | 36 | 44 | 47000 | 47000 | 639
639 | 302
623 | 608 | 593
593 | 268
579 | 259
565 | 551
500 | 537
240 | 524
574 | 512
201 | 500
500 | 488 | 476
200 | 193
466 | 455
455 | 4 | | 44LH16 | 42 | 44 | 54200 | 54200 | 366
737
421 | 352
719
405 | 339
701
390 | 326
684
375 | 314
668
362 | 303
652
348 | 637
336 | 281
622
324 | 271
608
313 | 261
594
302 | 252
580
291 | 243
568
282 | 234
555
272 | 543
263 | 219
531
255 | 5:
2: | | 44LH17 | 47 | 44 | 58200 | 58200 | 790
450 | 780
438 | 769
426 | 759
415 | 750
405 | 732
390 | 715
376 | 699
363 | 683
351 | 667
338 | 652
327 | 638
316 | 624
305 | 610
295 | 597
285 | 51 | | | | | 56-59 | 60-80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 9 | | 48LH10 | 21 | 48 | 20000 | 20000 | 246
141 | 241
136 | 236
132 | 231
127 | 226
123 | 221
119 | 217
116 | 212
112 | 208
108 | 204
105 | 200 | 196
99 | 192
96 | 188
93 | 185
90 | 1 | | 48LH11 | 22 | 48 | 21700 | 21700 | 266
152 | 260
147 | 255
142 | 249
137 | 244
133 | 239
129 | 234
125 | 229
120 | 225
117 | 220
113 | 216
110 | 212
106 | 208
103 | 204
100 | 200
97 | 1: | | 48LH12 | 25 | 48 | 27400 | 27400 | 336
191 | 329
185 | 322
179 | 315
173 | 308
167 | 301
161 | 295
156 | 289
151 | 283
147 | 277
142 | 272
138 | 266
133 | 261
129 | 256
126 | 251
122 | 2. | | 48LH13 | 29 | 48 | 32800 | 32800 | 402
228 | 393
221 | 384
213 | 376
206 | 368
199 | 360
193 | 353
187 | 345
180 | 338
175 | 332
170 | 325
164 | 318
159 | 312
154 | 306
150 | 300
145 | 2 | | 48LH14 | 32 | 48 | 38700 | 38700 | 475
269 | 464
260 | 454
251 | 444
243 | 434
234 | 425
227 | 416
220 | 407
212 | 399
206 | 390
199 | 383
193 | 375
187 | 367
181 | 360
176 | 353
171 | 34 | | 48LH15 | 36 | 48 | 44500 | 44500 | 545
308 | 533
298 | 521
287 | 510
278 | 499
269 | 488
260 | 478
252 | 468
244 | 458
236 | 448
228 | 439
221 | 430
214 | 422
208 | 413
201 | 405
195 | 3 | | 48LH16 | 42 | 48 | 51300 | 51300 | 629
355 | 615
343 | 601
331 | 588
320 | 576
310 | 563
299 | 551
289 | 540
280 | 528
271 | 518
263 | 507
255 | 497
247 | 487
239 | 477
232 | 468
225 | 4: | | 48LH17 | 47 | 48 | 57600 | 57600 | 706
397 | 690
383 | 675
371 | 660
358 | 646
346 | 632
335 | 619
324 | 606
314 | 593
304 | 581
294 | 569
285 | 558
276 | 547
268 | 536
260 | 525
252 | 5 | * The safe uniform load for the clear spans shown in the Safe Load Column is equal to (Safe Load) / (Clear span + 0.67). (The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed). In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the Safe Load Column, exceed the uniform load calculated for the minimum clear span listed in the Safe Load Column. To solve for <u>live</u> loads for clear spans shown in the Safe Load Column (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load Table by the (the shortest clear span shown in the Load Table + 0.67 feet)² and divide by (the actual clear span + 0.67 feet)². The live load shall <u>not</u> exceed the safe uniform load. # STANDARD LRFD LOAD TABLE DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of an **LRFD DLH-Series** Steel Joists. The weight of factored DEAD loads, including the joists, must in all cases be deducted to determine the factored LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. All loads shown are for roof construction only. The **RED** figures in this load table are the unfactored, nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the **RED** figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/8 inch per foot. If pitch exceeds this standard, the load table does <u>not</u> apply. Sloped parallel-chord joists shall use span as defined by the length along the slope. All rows of bridging shall be diagonal bridging with bolted connections at the chords and intersections. Where the joist span is in the **BLUE SHADED** area of the load table hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. Where the joist span is in the **GRAY SHADED** area of the load table hoisting cables shall not be released until all rows of bridging are completely installed. The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} = RED$ figure in the Load Table, and L = (clear span + 0.67) in feet. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas. The top chords are considered as being stayed laterally by floor slab or roof deck. The approximate joist weights per linear foot shown in these tables do not include accessories. # **LRFD** | | | | NDARD LO | | | | | | | | | , | | | | | | | | |-------------|---------------|--------|-------------|------------|-------------------|--------------------------|------------|------------|------------|--------------------------|------------|--------------------|--------------------|------------|------------|------------|--------------------------|--------------------------|------------| | | Ва | sed on | a 50 ksi Ma | ximui | n Yiel | d Stre | ength | - Load | ds Sho | own ii | n Pou | nds p | er Lin | ear Fo | oot (pl | f) | | | | | Joist | Approx. Wt | Depth | SAFELOAD* | | | | | | | | | | | | | | | | | | Designation | in Lbs. Per | in | in Lbs. | | | | | | CLE | AR S | PAN II | I LINE | AR F | ET | | | | | | | | Linear Ft | inches | Between | | | | | | | | | | | | | | | | | | | (Joists only) | | 61-88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | | 52DLH10 | 25 | 52 | 40050 | 447 | 436 | 427 | 418 | 409 | 400 | 391 | 384 | 376 | 369 | 361 | 354 | 346 | 340 | 334 | 327 | | | | | | 171 | 165 | 159 | 154 | 150 | 145 | 140 | 136 | 132 | 128 | 124 | 120 | 116 | 114 | 110 | 107 | | 52DLH11 | 26 | 52 | 43950 | 490 | 480 | 469 | 459 | 448 | 439 | 430 | 421 | 412 | 405 | 396 | 388 | 381 | 373 | 366 | 360 | | 50DLLI40 | 00 | | 40050 | 187 | 181 | 174 | 169 | 164 | 158 | 153 | 149 | 144 | 140 | 135 | 132 | 128 | 124 | 120 | 117 | | 52DLH12 | 29 | 52 | 49050 | 547 | 535 | 523 | 513 | 501 | 490 | 480 | 471 | 460 | 451 | 442 | 433 | 426 | 417 | 409 | 402 | | 52DLH13 | 34 | 52 | 59550 | 204
664 | 1 <mark>97</mark> | 1 <mark>91</mark>
636 | 185
621 | 179
609 | 173
595 | 1 <mark>68</mark>
583 | 163
571 | 1 <u>58</u>
559 | 1 <u>53</u>
549 | 149
537 | 144
526 | 140
516 | 1 <mark>35</mark>
507 | 1 <mark>32</mark>
496 | 128
487 | | 32DLH13 | 34 | 52 | 39330 | 247 | 239 | 231 | 224 | 216 | 209 | 203 | 197 | 191 | 185 | 180 | 174 | 170 | 164 | 159 | 155 | | 52DLH14 | 39 | 52 | 68100 | 760 | 745 | 729 | 714 | 699 | 685 | 670 | 657 | 645 | 631 | 619 | 607 | 595 | 585 | 573 | 562 | | 32BEITT- | 00 | 52 | 00100 | 276 | 266 | 258 | 249 | 242 | 234 | 227 | 220 | 213 | 207 | 201 | 194 | 189 | 184 | 178 | 173 | | 52DLH15 | 42 | 52 | 76500 | 853 | 835 | 817 | 799 | 783 | 766 | 750 | 735 | 720 | 705 | 691 | 676 | 664 | 651 | 639 | 627 | | 0222 | | | | 311 | 301 | 291 | 282 | 272 | 264 | 256 | 247 | 240 | 233 | 226 | 219 | 213 | 207 | 201 | 195 | | 52DLH16 | 45 | 52 | 82500 | 921 | 901 | 882 | 862 | 844 | 826 | 810 | 792 | 777 | 760 | 745 | 730 | 717 | 702 | 688 | 676 | | | | | | 346 | 335 | 324 | 314 | 304 | 294 | 285 | 276 | 267 | 260 | 252 | 245 | 237 | 230 | 224 | 217 | | 52DLH17 | 52 | 52 | 94950 | 1059 | 1036 | | | 970 | 951 | 930 | 912 | 892 | 874 | 858 | 840 | 823 | 808 | 792 | 777 | | | | | | 395 | 381 | 369 | 357 | 346 | 335 | 324 | 315 | 304 | 296 | 286 | 279 | 270 | 263 | 255 | 247 | | | | | 66-96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 56DLH11 | 26 | 56 | 42150 | 432 | 424 | 415 | 408 | 400 | 393 | 385 | 379 | 372 | 366 | 358 | 352 | 346 | 340 | 334 | 328 | | 50DLLI40 | 00 | | 40450 | 169 | 163 | 158 | 153 | 149 | 145 | 140 | 136
433 | 133 | 129
417 | 125 | 122 | 118 | 115 | 113 | 110
373 | | 56DLH12 | 30 | 56 | 48450 | 496
184 | 486
178 | 477
173 | 468
168 | 459
163 | 450
158 | 442
153 | 150 | 426
145 | 417
141 | 409
137 | 402
133 | 394
130 | 388
126 | 381
123 | 119 | | 56DLH13 | 34 | 56 | 58650 | 601 | 591 | 579 | 568 | 558 | 547 | 537 | 526 | 516 | 507 | 496 | 487 | 478 | 471 | 462 | 454 | | SODERIS | 34 | 50 | 36030 | 223 | 216 | 209 | 204 | 197 | 191 | 186 | 181 | 175 | 171 | 166 | 161 | 157 | 152 | 149 | 145 | | 56DLH14 | 39 | 56 | 66300 | 679 | 666 | 652 | 640 | 628 | 616 | 604 | 594 | 582 | 571 | 562 | 552 | 541 | 532 | 523
| 514 | | OOBLIII | 00 | 00 | 00000 | 249 | 242 | 234 | 228 | 221 | 214 | 209 | 202 | 196 | 190 | 186 | 181 | 175 | 171 | 167 | 162 | | 56DLH15 | 42 | 56 | 75750 | 777 | 762 | 747 | 732 | 717 | 703 | 690 | 676 | 664 | 651 | 639 | 628 | 616 | 604 | 594 | 583 | | | | | | 281 | 272 | 264 | 256 | 248 | 242 | 234 | 228 | 221 | 215 | 209 | 204 | 198 | 192 | 188 | 182 | | 56DLH16 | 46 | 56 | 81750 | 838 | 822 | 805 | 789 | 774 | 759 | 744 | 730 | 717 | 703 | 690 | 678 | 666 | 654 | 642 | 630 | | | | | | 313 | 304 | 294 | 285 | 277 | 269 | 262 | 254 | 247 | 240 | 233 | 227 | 221 | 214 | 209 | 204 | | 56DLH17 | 51 | 56 | 94200 | 964 | 945 | 927 | 907 | 891 | 873 | 856 | 840 | 823 | 808 | 793 | 780 | 765 | 751 | 738 | 724 | | | | | | 356 | 345 | 335 | 325 | 316 | 306 | 298 | 289 | 281 | 273 | 266 | 258 | 251 | 245 | 238 | 231 | ### STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, LRFD DLH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Approx Wt Depth SAFE LOAD Joist in Lbs. Per in Lbs. **CLEAR SPAN IN LINEAR FEET** Designation in Linear Ft Between inches (Joists only) 70-99 100-104 60DLH12 60DLH13 60DLH14 60DLH15 60DLH16 60DLH17 60DLH18 75-99 100-112 64DI H12 64DLH13 64DLH14 64DLH15 64DLH16 64DLH17 64DLH18 80-99 100-120 68DI H13 68DLH14 68DI H15 68DLH16 68DLH17 68DLH18 68DLH19 84-99 100-128 72DLH14 72DLH15 72DLH16 72DLH17 780 768 913 900 72DLH18 72DLH19 In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the Safe Load Column, exceed the uniform load calculated for the minimum clear span listed in the Safe Load Column. To solve for <u>live</u> loads for clear spans shown in the Safe Load Column (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load Table by (the shortest clear span shown in the Load Table + 0.67 feet)² and divide by (the actual clear span + 0.67 feet)². The live load shall <u>not</u> exceed the safe uniform load. 789 777 666 657 756 745 886 873 735 724 859 847 705 694 823 811 ^{*} The safe factored uniform load for the clear spans shown in the Safe Load Column is equal to (Safe Load) / (Clear span + 0.67). (The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed). # STANDARD ASD LOAD TABLE DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 25, 1983 Revised to November 10, 2003 - Effective March 01, 2005 The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of an **ASD DLH-Series** Steel Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. All loads shown are for roof construction only. The **RED** figures in this load table are the nominal LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the **RED** figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the carrying capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/8 inch per foot. If pitch exceeds this standard, the load table does <u>not</u> apply. Sloped parallel-chord joists shall use span as defined by the length along the slope. All rows of bridging shall be diagonal bridging with bolted connections at the chords and intersections. Where the joist span is in the **BLUE SHADED** area of the load table hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. Where the joist span is in the **GRAY SHADED** area of the load table hoisting cables shall not be released until all rows of bridging are completely installed. The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^{-6})$, where $W_{LL} = \textbf{RED}$ figure in the Load Table, and L = (clear span + 0.67) in feet. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to the reduction of chord areas. The top chords are considered as being stayed laterally by floor slab or roof deck. The approximate joist weights per linear foot shown in these tables do <u>not</u> include accessories. # **ASD** | | | R | ST/
ased on a 50 | | | | | | | | OISTS | | | | ot (plf) | | | | | |-------------|-------------------------------------|--------------|----------------------|------------|-------------------|------------|------------|------------|------------|------------|--------------------------|--------------------------|-------------------|--------------------------|------------|------------|------------|------------|------------| | laia. | A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | KSI IVI | axiiiiui | II Heic | Julen | gui - L | .oaus . | SHOWII | IIIFO | unus p | CI LIII | ai i o | ot (pii) | | | | | | Joist | Approx. Wt in Lbs. Per | 1 | SAFELOAD*
in Lbs. | | | | | | | CLE | EAR SF | 141 14 4 | CCCT | | | | | | | | Designation | Linear Ft | in
inches | Between | | | | | | | CLI | EAN SE | AN III | FEET | | | | | | | | | (Joists only) | | 61-88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | | 52DLH10 | 25 | 52 | 26700 | 298 | 291 | 285 | 279 | 273 | 267 | 261 | 256 | 251 | 246 | 241 | 236 | 231 | 227 | 223 | 218 | | JZDLIIIO | 25 | 32 | 20700 | 171 | 165 | 159 | 154 | 150 | 145 | 140 | 136 | 132 | 128 | 124 | 120 | 116 | 114 | 110 | 107 | | 52DLH11 | 26 | 52 | 29300 | 327 | 320 | 313 | 306 | 299 | 293 | 287 | 281 | 275 | 270 | 264 | 259 | 254 | 249 | 244 | 240 | | 0 | | | | 187 | 181 | 174 | 169 | 164 | 158 | 153 | 149 | 144 | 140 | 135 | 132 | 128 | 124 | 120 | 117 | | 52DLH12 | 29 | 52 | 32700 | 365 | 357 | 349 | 342 | 334 | 327 | 320 | 314 | 307 | 301 | 295 | 289 | 284 | 278 | 273 | 268 | | | | | | 204 | 197 | 191 | 185 | 179 | 173 | 168 | 163 | 158 | 153 | 149 | 144 | 140 | 135 | 132 | 128 | | 52DLH13 | 34 | 52 | 39700 | 443 | 433 | 424 | 414 | 406 | 397 | 389 | 381 | 373 | 366 | 358 | 351 | 344 | 338 | 331 | 325 | | 50511111 | | | 1=100 | 247 | 239 | 231 | 224 | 216 | 209 | 203 | 197 | 191 | 185 | 180 | 174 | 170 | 164 | 159 | 155 | | 52DLH14 | 39 | 52 | 45400 | 507
276 | 497
266 | 486
258 | 476
249 | 466
242 | 457
234 | 447
227 | 438
220 | 430
213 | 421
207 | 413
201 | 405
194 | 397 | 390 | 382
178 | 375 | | 52DLH15 | 42 | 52 | 51000 | 569 | 557 | 545 | 533 | 522 | 511 | 500 | 490 | 480 | 470 | 461 | 451 | 189
443 | 184
434 | 426 | 173
418 | | 52DLH15 | 42 | 52 | 51000 | 311 | 301 | 291 | 282 | 272 | 264 | 256 | 247 | 240 | 233 | 226 | 219 | 213 | 207 | 201 | 195 | | 52DLH16 | 45 | 52 | 55000 | 614 | 601 | 588 | 575 | 563 | 551 | 540 | 528 | 518 | 507 | 497 | 487 | 478 | 468 | 459 | 451 | | 02220 | | 02 | 00000 | 346 | 335 | 324 | 314 | 304 | 294 | 285 | 276 | 267 | 260 | 252 | 245 | 237 | 230 | 224 | 217 | | 52DLH17 | 52 | 52 | 63300 | 706 | 691 | 676 | 661 | 647 | 634 | 620 | 608 | 595 | 583 | 572 | 560 | 549 | 539 | 528 | 518 | | | | | | 395 | 381 | 369 | 357 | 346 | 335 | 324 | 315 | 304 | 296 | 286 | 279 | 270 | 263 | 255 | 247 | | | | | 66-96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 56DLH11 | 26 | 56 | 28100 | 288 | 283 | 277 | 272 | 267 | 262 | 257 | 253 | 248 | 244 | 239 | 235 | 231 | 227 | 223 | 219 | | 56DLH12 | 30 | 56 | 32300 | 169
331 | 1 <mark>63</mark> | 158
318 | 153
312 | 149 | 145
300 | 140
295 | 1 <mark>36</mark>
289 | 1 <mark>33</mark>
284 | 129
278 | 1 <mark>25</mark>
273 | 122
268 | 118
263 | 115
259 | 113
254 | 110
249 | | 20DLH12 | 30 | 56 | 32300 | 184 | 324
178 | 173 | 168 | 306
163 | 158 | 295
153 | 150 | 145 | 141 | 137 | 133 | 130 | 126 | 123 | 119 | | 56DLH13 | 34 | 56 | 39100 | 401 | 394 | 386 | 379 | 372 | 365 | 358 | 351 | 344 | 338 | 331 | 325 | 319 | 314 | 308 | 303 | | OODLITTO | 0. | 00 | 00100 | 223 | 216 | 209 | 204 | 197 | 191 | 186 | 181 | 175 | 171 | 166 | 161 | 157 | 152 | 149 | 145 | | 56DLH14 | 39 | 56 | 44200 | 453 | 444 | 435 | 427 | 419 | 411 | 403 | 396 | 388 | 381 | 375 | 368 | 361 | 355 | 349 | 343 | | | | | | 249 | 242 | 234 | 228 | 221 | 214 | 209 | 202 | 196 | 190 | 186 | 181 | 175 | 171 | 167 | 162 | | 56DLH15 | 42 | 56 | 50500 | 518 | 508 | 498 | 488 | 478 | 469 | 460 | 451 | 443 | 434 | 426 | 419 | 411 | 403 | 396 | 389 | | | | | | 281 | 272 | 264 | 256 | 248 | 242 | 234 | 228 | 221 | 215 | 209 | 204 | 198 | 192 | 188 | 182 | | 56DLH16 | 46 | 56 | 54500 | 559 | 548 | 537 | 526 | 516 | 506 | 496 | 487 | 478 | 469 | 460 | 452 | 444 | 436 | 428 | 420 | | ECDI LI17 | 51 | FC | 60000 | 313
643 | 304
630 | 294
618 | 285 | 277 | 269 | 262 | 254 | 247 | 240 | 233 | 227 | 221 | 214 | 209 | 204 | | 56DLH17 | 51 | 56 | 62800 | 356 | 630
345 | 335 | 605
325 | 594
316 | 582
306 | 571
298 | 560
289 | 549
281 | 539
273 | 529
266 | 520
258 | 510
251 | 501
245 | 492
238 | 483
231 | | | | | | 000 | 040 | 000 | 020 | 010 | 300 | 230 | 200 | 201 | 210 | 200 | 200 | 201 | 240 | 200 | 201 | ### STANDARD LOAD TABLE LONGSPAN STEEL JOISTS, DLH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf) Joist Approx. Wt Depth SAFF LOAD **CLEAR SPAN IN FEET** Designation in Lbs. Per in in Lbs. Linear Ft inches Between 70-99 100-104 Joists only) 60DI H12 60DLH13 60DLH14 60DLH15 60DLH16 60DLH17 60DLH18 75-99 100-112 64DI H12 64DLH13
64DLH14 64DLH15 64DLH16 64DLH17 64DLH18 80-99 100-120 68DI H13 68DLH14 68DLH15 68DLH16 68DLH17 68DLH18 68DLH19 84-99 100-128 72DLH14 72DLH15 72DLH16 72DLH17 72DLH18 72DLH19 In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the Safe Load Column, exceed the uniform load calculated for the minimum clear span listed in the Safe Load Column. To solve for \underline{live} loads for clear spans shown in the Safe Load Column (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load Table by (the shortest clear span shown in the Load Table + 0.67 feet)² and divide by (the actual clear span + 0.67 feet)². The live load shall \underline{not} exceed the safe uniform load. ^{*} The safe uniform load for the clear spans shown in the Safe Load Column is equal to (Safe Load) / (Clear Span + 0.67). (The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed). # **NOTES** ### **HIGH STRENGTH** ### **ECONOMICAL** **DESIGN** - Vulcraft SLH Series long span steel joists are designed in accordance with the specifications included in this section. **TABLE 1** | SLH- SERIES BRIDGING SPACING | | | | | | | | | | |---|--|--------------------------------------|--|--|--|--|--|--|--| | JOIST MINIMUM MAXIMUM SECTION BOLT SPACING OF NUMBER* DIAMETER BRIDGING LINES | | | | | | | | | | | SLH 15-18
SLH 19-20
SLH 21-22
SLH 23-25 | 5/8" dia A325
5/8" dia A325
5/8" dia A325
3/4" dia A325 | 21'-0"
26'-0"
30'-0"
30'-0" | | | | | | | | ^{*}LAST TWO DIGITS OF JOIST DESIGNATION SHOWN IN LOAD TABLE. ### **ACCESSORIES** see page 74. **PAINT** - Vulcraft SLH Series joists receive a shop-coat of rust inhibitive primer that conforms to specification 202.4. **SPECIFICATIONS** - see page 80. **TABLE 2** | SLH-SERIES BEARING DATA | | | | | | | | | | | |-----------------------------|------------------|------------------------------|---------------------------------------|--|--|--|--|--|--|--| | JOIST
SECTION
NUMBER* | BEARING
DEPTH | MINIMUM
BEARING
LENGTH | BEARING
SEAT
FILLET
WELD (1) | BEARING
SEAT BOLTS
FOR
ERECTION (1) | SLH 15-18 | 7-1/2" | 4" | 2-1/4" x 2" | 2-3/4" dia A325 | | | | | | | | SLH 19-25 | 7-1/2" | 6" | 2-1/4" x 4" | 2-3/4" dia A325 | | | | | | | (1) BEARING SEATS MUST BE WELDED IN ADDITION TO BEING BOLTED. **TABLE 3** | | HORIZON | TAL PLUS | | DIAGONAL ONLY BRIDGING | | | | | | | | | | | |-------|--------------|----------------------------|----------------------------------|--|-----------|-------------------|---------|--|--|--|--|--|--|--| | JOIST | DIAGONAL | BRIDGING* | | | MAXIMUM . | IOIST SPACING FOR | | | | | | | | | | DEPTH | .66 X DEPTH* | HORIZONTAL | MIN. JOIST | | DIAGONA | L BRIDGING SIZE | | | | | | | | | | | | AND DIAGONAL
ANGLE SIZE | SPACE FOR DIAGONAL ONLY BRIDGING | 2" x 2" x 1/8" 2 1/2" x 2 1/2" x 3/16" 3" x 3" x 3/16" 3 1/2" x 3 1/2" x | 80" | 4'-4" | 1 3/4" x 1 3/4" x 1/8" | 4'-5" | 9'-11" | 15'-1" | 18'-8" | 22'-1" | | | | | | | | | 88" | 4'-9" | 1 3/4" x 1 3/4" x 1/8" | 4'-10" | 7'-3" | 14'-9" | 18'-5" | 21'-11" | | | | | | | | | 96" | 5'-3" | 2" x 2" x 1/8" | 5'-4" | | 14'-5" | 18'-2" | 21'-8" | | | | | | | | | 104" | 5'-8" | 2 1/2" x 2 1/2" x 3/16" | 5'-9" | | 14'-0" | 17'-10" | 21'-5" | | | | | | | | | 112" | 6'-1" | 2 1/2" x 2 1/2" x 3/16" | 6'-2" | 11'-11" 17'-6" 21'-1" | | | | | | | | | | | | 120" | 6'-7" | 2 1/2" x 2 1/2" x 3/16" | 6'-8" | 17'-0" 20'-10" | | | | | | | | | | | *NOTE: WHEN THE JOIST SPACING IS LESS THAN 0.66 x JOIST DEPTH, BOLTED HORIZONTAL BRIDGING SHALL BE USED IN ADDITION TO THE DIAGONAL BRIDGING. NOTES: 1. For lengths and depths greater than those shown in the load tables contact Vulcraft. 2. Additional bridging may be required when joists support a standing seam roof. The specifying professional should require the joist manufacturer to check the system and provide bridging as required to adequately brace the joists against lateral movement. For bridging requirements due to uplift loading refer to specification section 204.13. # ACCESSORIES AND DETAILS SLH SERIES LONGSPAN STEEL JOISTS. THE RECOMMENDED CONFIGURATION FOR SLH-SERIES JOISTS IS A DOUBLE PITCHED TOP CHORD WITH A MINIMUM PITCH OF 1/4 INCH PER FOOT. THE DEPTH OF THE JOIST SHALL BE THAT AT THE RIDGE OF THE JOIST. FOR OTHER CONFIGURATIONS CONTACT VULCRAFT. WEB LAYOUT MAY VARY FROM THAT SHOWN. PARALLEL CHORD JOISTS SEE SPECIFICATION 203.4 (c) (a) Extend top chords require the special attention of the specifying engineer. The magnitude and location of the design loads to be supported, the deflection requirements, and the proper bracing shall be clearly indicated on the structural drawings. ### NOTE: FOR ANY CONCENTRATED LOADS SUCH AS BASKETBALL GOALS, CURTAINS, SCORE BOARDS, HVAC UNITS, ETC. IT IS ESSENTIAL THAT THE SPECIFYING ENGINEER PROVIDE THE MAGNITUDE AND LOCATION OF ALL LOADS ON THE STRUCTURAL DRAWINGS. | SLI | H-SERIES CAM | IBER* | | | | | | | | |------------|-------------------------------|----------|--|--|--|--|--|--|--| | TOP | DOUBLE | PARALLEL | | | | | | | | | CHORD | PITCH | CHORD | | | | | | | | | LENGTH | JOISTS** | JOISTS | | | | | | | | | 111'-0" | 3 1/4" | 5 1/4" | | | | | | | | | 120'-0" | 3 1/2" | 6" | | | | | | | | | 130'-0" | 3 7/8" | 7" | | | | | | | | | 140'-0" | 4 1/8" | 8" | | | | | | | | | 150'-0" | 4 3/8" | 8 3/4" | | | | | | | | | 160'-0" | 4 3/4" | 9 1/2" | | | | | | | | | 180'-0" | 5 1/4" | 10 1/2" | | | | | | | | | 200'-0" | 5 7/8" | 11 3/4" | | | | | | | | | 220'-0" | 6 1/2" | 13" | | | | | | | | | 240'-0" | 7" | 14" | | | | | | | | | **JOISTS W | **JOISTS WITH TOP CHORD PITCH | | | | | | | | | **JOISTS WITH TOP CHORD PITCH OF 1/4" PER FOOT OR GREATER. *For walls or other structural members near SLH-Series Joists provisions need to be made to match top chord elevation. Specifying professional must provide camber requirements in inches if camber is different from that shown. TOP CHORD EXTENSION (a) SEE TABLE 204.8.1 BOTTOM CHORD STRUT (SEE SPECFICATION 204.1) *** If bottom chord is to be bolted or welded the specifying professional must provide axial loads on structural drawings. ## ACCESSORIES AND DETAILS SLH SERIES LONGSPAN STEEL JOISTS ### **CROSS BRIDGING** A) HORIZONTAL BRIDGING IS TO BE USED IN THE SPACE ADJACENT TO THE WALL TO ALLOW FOR PROPER DEFLECTION OF THE JOIST NEAREST THE WALL. SEE TABLES 1 AND 3 PAGE 73. B) FOR REQUIRED BOLT SIZE REFER TO BRIDGING TABLE ON PAGE 73. NOTE: CLIP CONFIGURATION MAY VARY FROM THAT SHOWN. **BOLTED, HORIZONTAL PLUS DIAGONAL, BRIDGING** SEE TABLE 3, PAGE 73 AND SPECIFICATION 204.6. NOTE: CLIP CONFIGURATION MAY VARY FROM THAT SHOWN. NOTE: DO NOT HANG ANY MECHANICAL, ELECTRICAL, ETC. FROM BRIDGING. ### **BOLTED CONNECTION (b)** SEE TABLE 2, PAGE 73. TYPICALLY USED AT COLUMNS The Occupation Safety and Health Administration Standards (OSHA), Paragraph 1910.12 refers to Paragraph 1518.751 of "Construction Standards" which states: "In steel framing, where bar joists are utilized, and columns are not framed in at least two directions with structural steel members, a bar joist shall be field-bolted at columns to provide lateral stability during construction." ANCHORAGE TO STEEL SEE TABLE 2, PAGE 73. ANCHORAGE TO MASONRY SEE SPECIFICATION 204.5 (a) SEE TABLE 2, PAGE 73. ### VULCRAFT LOAD TABLE SUPER LONGSPAN STEEL JOISTS, LRFD SLH-SERIES **JANUARY 1, 2007** Based on a 50 ksi Maximum Yield Strength The black figures in the following table give the TOTAL safe uniformly-distributed load-carrying capacities, in pounds per linear foot, of LRFD SLH-Series Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. All loads shown are for roof construction only. The red figures in this table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the red figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the design capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/4 inch per foot. If pitch exceeds this standard, the load table does not apply. This load table may be used for parallel chord joists installed to a maximum slope of 1/2 inch per foot. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to reduction of chord areas. The top chords are considered as being stayed laterally by the roof deck. The approximate joist weights per linear foot shown in these table do not include accessories. When erecting SLH joists, hoisting cables shall not be released until all rows of bridging are completely installed. To solve for **live** loads for clear spans shown in the shaded area (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load tables by (the shortest clear span shown in the Load table + 0.67 feet)² and divide by (the actual clear span +.067 feet)². The live load shall **not** exceed the safe uniform load. ^{**}For spans between those listed use a linear interpolation. | | Annuay MA |-------------|---------------|--------|------------|------|------
------|------|------|------|-------------|---------|--------|-------------|------|-----|-----|-----|-----|-----| | | Approx. Wt. | D II. | 0 () 14 | | | | | | | | | | | | | | | | | | 1.2.1 | In Lbs. per | Depth | Safe Load* | | | | | | 01.1 | - 4 D . O D | | + | | | | | | | | | Joist | Linear Ft. | . In | In Lbs. | | | | | | GL | EAR SP | AN IN I | -EEI^^ | | | | | | | | | Designation | (Joists Only) | Inches | Between | 80-110 | 111 | 114 | 117 | 120 | 123 | 126 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | | | 80SLH15 | 40 | 80 | 78,000 | 699 | 663 | 632 | 602 | 575 | 549 | 525 | 503 | 482 | 461 | 443 | 425 | 408 | 392 | 366 | 342 | | | | | | 321 | 296 | 275 | 255 | 236 | 220 | 205 | 192 | 179 | 167 | 157 | 147 | 139 | 130 | 118 | 107 | | 80SLH16 | 46 | 80 | 93,750 | 840 | 802 | 763 | 727 | 691 | 658 | 628 | 600 | 574 | 549 | 525 | 504 | 483 | 463 | 433 | 406 | | | | | | 375 | 347 | 321 | 297 | 276 | 257 | 240 | 224 | 209 | 196 | 184 | 172 | 162 | 162 | 138 | 126 | | 80SLH17 | 53 | 80 | 108,300 | 971 | 926 | 881 | 839 | 800 | 765 | 731 | 699 | 669 | 641 | 615 | 590 | 567 | 545 | 510 | 479 | | | | | | 451 | 416 | 386 | 358 | 332 | 309 | 288 | 269 | 252 | 235 | 221 | 207 | 195 | 183 | 166 | 151 | | 80SLH18 | 60 | 80 | 122,400 | 1097 | 1044 | 993 | 947 | 903 | 863 | 825 | 789 | 756 | 723 | 695 | 666 | 641 | 615 | 576 | 542 | | | | | | 516 | 477 | 441 | 409 | 380 | 354 | 330 | 308 | 288 | 270 | 253 | 237 | 223 | 210 | 190 | 173 | | 80SLH19 | 67 | 80 | 142,800 | 1280 | 1218 | 1160 | 1104 | 1052 | 1005 | 960 | 918 | 878 | 840 | 806 | 774 | 743 | 714 | 668 | 627 | | | | | | 578 | 533 | 493 | 458 | 425 | 396 | 369 | 344 | 322 | 301 | 283 | 266 | 250 | 235 | 213 | 193 | | 80SLH20 | 75 | 80 | 160,500 | 1446 | 1382 | 1323 | 1268 | 1211 | 1157 | 1104 | 1056 | 1011 | 968 | 927 | 891 | 855 | 821 | 770 | 722 | | | | | , | 646 | 596 | 552 | 512 | 475 | 443 | 412 | 385 | 360 | 337 | 316 | 297 | 279 | 263 | 238 | 216 | | | | | 88-119 | 120 | 123 | 126 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | | 88SLH16 | 46 | 88 | 93.000 | 771 | 735 | 701 | 671 | 642 | 615 | 591 | 567 | 545 | 524 | 503 | 471 | 443 | 417 | 393 | 372 | | | | | , | 361 | 336 | 313 | 291 | 272 | 254 | 238 | 223 | 210 | 197 | 186 | 168 | 153 | 140 | 127 | 117 | | 88SLH17 | 51 | 88 | 105,150 | 871 | 830 | 789 | 753 | 719 | 687 | 659 | 630 | 605 | 579 | 557 | 521 | 489 | 459 | 432 | 407 | | 332 | 0. | | 100,100 | 404 | 375 | 349 | 325 | 304 | 284 | 266 | 249 | 234 | 220 | 207 | 187 | 170 | 156 | 143 | 130 | | 88SLH18 | 58 | 88 | 120.600 | 1001 | 953 | 908 | 866 | 827 | 791 | 756 | 725 | 695 | 666 | 639 | 599 | 561 | 528 | 497 | 468 | | GGGEITIG | 00 | 00 | 120,000 | 460 | 427 | 397 | 370 | 346 | 323 | 303 | 284 | 267 | 250 | 236 | 214 | 195 | 177 | 162 | 149 | | 88SLH19 | 65 | 88 | 139,500 | 1157 | 1101 | 1049 | 999 | 954 | 912 | 873 | 836 | 801 | 770 | 738 | 692 | 648 | 609 | 573 | 540 | | OCCEPTION | 00 | 00 | 100,000 | 521 | 484 | 450 | 420 | 392 | 367 | 343 | 322 | 302 | 284 | 267 | 243 | 221 | 201 | 184 | 169 | | 88SLH20 | 76 | 88 | 160,500 | 1334 | 1281 | 1232 | 1184 | 1133 | 1085 | 1041 | 998 | 959 | 921 | 885 | 830 | 780 | 734 | 692 | 626 | | 000E1120 | , , | 30 | 100,000 | 623 | 579 | 539 | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 290 | 264 | 241 | 220 | 202 | | 88SLH21 | 89 | 88 | 198,000 | 1649 | 1568 | 1494 | 1425 | 1361 | 1301 | 1244 | 1191 | 1143 | 1097 | 1053 | 986 | 924 | 869 | 816 | 770 | | 003LHZ1 | 09 | 00 | 190,000 | 724 | 673 | 626 | 584 | 545 | 509 | 477 | 447 | 420 | 395 | 372 | 337 | 307 | 280 | 256 | 235 | | | | | | 124 | 0/3 | 020 | J04 | J45 | 509 | 4// | 447 | 420 | <i>ა</i> ყე | 3/2 | 337 | 307 | 200 | 200 | 200 | ^{*}The safe load for the clear spans shown in the shaded section is equal to (Safe Load) / (Clear Span + 0.67). [The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed.] In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the shaded area, exceed the uniform load calculated for the minimum clear span listed in the shaded area. ### VULCRAFT LOAD TABLE SUPER LONGSPAN STEEL JOISTS, SLH-SERIES Based on a 50 ksi Maximum Yield Strength # **LRFD** | | Approx. Wt. |----------------------|-----------------------------|----------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------| | la:a4 | In Lbs. per | Depth | Safe Load* | | | | | | 01.1 | - 4 D O C | | * | | | | | | | | | Joist
Designation | Linear Ft.
(Joists Only) | Inches | In Lbs.
Between | | | | | | GLI | EAR SP | PAN IN | FEE I ^ ^ | | | | | | | | | Designation | (Juists Utily) | IIIUIIUS | 96-128 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | | 96SLH17 | 52 | 96 | 105,000 | 810 | 776 | 744 | 711 | 684 | 657 | 632 | 608 | 570 | 536 | 503 | 474 | 447 | 422 | 399 | 378 | | | - | | , | 389 | 363 | 339 | 318 | 298 | 280 | 263 | 247 | 224 | 204 | 186 | 170 | 156 | 143 | 132 | 122 | | 96SLH18 | 58 | 96 | 118,200 | 912 | 875 | 839 | 803 | 770 | 740 | 713 | 686 | 645 | 608 | 572 | 540 | 510 | 483 | 458 | 434 | | | | | | 443 | 413 | 386 | 362 | 340 | 319 | 300 | 282 | 256 | 232 | 212 | 194 | 178 | 163 | 150 | 139 | | 96SLH19 | 66 | 96 | 141,300 | 1091 | 1046 | 1001 | 957 | 917 | 878 | 842 | 809 | 758 | 711 | 668 | 629 | 594 | 560 | 530 | 501 | | | | | | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 290 | 264 | 241 | 220 | 202 | 186 | 171 | 158 | | 96SLH20 | 74 | 96 | 159,000 | 1236 | 1184 | 1131 | 1083 | 1037 | 993 | 952 | 915 | 857 | 804 | 756 | 713 | 672 | 635 | 600 | 567 | | 96SLH21 | 90 | 96 | 100 500 | 569
1541 | 531
1473 | 496 | 465
1350 | 436
1296 | 409
1243 | 385
1196 | 362
1149 | 329
1079 | 299
1013 | 272
953 | 249
897 | 229
846 | 210
800 | 193
756 | 178
716 | | 90SLH21 | 90 | 90 | 199,500 | 698 | 652 | 1410
610 | 571 | 535 | 503 | 473 | 445 | 404 | 367 | 335 | 306 | 281 | 258 | 238 | 220 | | 96SLH22 | 102 | 96 | 223,500 | 1725 | 1662 | 1601 | 1542 | 1487 | 1436 | 1382 | 1329 | 1248 | 1173 | 1104 | 1041 | 984 | 930 | 881 | 834 | | OGCE IEE | 102 | 00 | 220,000 | 811 | 757 | 708 | 663 | 622 | 584 | 549 | 517 | 469 | 426 | 389 | 355 | 326 | 300 | 276 | 255 | | | | | 104-137 | 138 | 141 | 144 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | | 104SLH18 | 59 | 104 | 115,200 | 831 | 798 | 768 | 734 | 708 | 666 | 627 | 594 | 561 | 531 | 503 | 477 | 453 | 431 | 410 | 390 | | | | | | 426 | 400 | 375 | 353 | 332 | 301 | 274 | 250 | 229 | 209 | 192 | 177 | 164 | 152 | 140 | 130 | | 104SLH19 | 67 | 104 | 140,100 | 1011 | 971 | 933 | 897 | 861 | 809 | 761 | 719 | 678 | 641 | 606 | 575 | 546 | 519 | 488 | 468 | | | | | | 484 | 453 | 426 | 401 | 377 | 342 | 311 | 284 | 260 | 238 | 218 | 201 | 186 | 172 | 160 | 148 | | 104SLH20 | 75 | 104 | 157,500 | 1146 | 1107 | 1071 | 1032 | 992 | 932 | 875 | 822 | 774 | 731 | 690 | 653 | 620 | 587 | 557 | 530 | | 104SLH21 | 90 | 104 | 198,000 | 548
1434 | 513
1376 | 483
1322 | 453
1271 | 427
1220 | 387
1145 | 352
1077 | 321
1016 | 293
959 | 269
906 | 247
857 | 228
812 | 210
771 | 195
732 | 181
696 | 167
662 | | 1043LHZ1 | 90 | 104 | 190,000 | 673 | 632 | 593 | 558 | 525 | 476 | 433 | 395 | 361 | 331 | 301 | 280 | 259 | 240 | 222 | 206 | | 104SLH22 | 104 | 104 | 222,000 | 1607 | 1551 | 1499 | 1449 | 1401 | 1325 | 1245 | 1175 | 1107 | 1047 | 990 | 939 | 891 | 846 | 804 | 767 | | 101021122 | 101 | 101 | 222,000 | 783 | 734 | 689 | 648 | 610 | 553 | 503 | 459 | 420 | 385 | 353 | 326 | 301 | 278 | 258 | 240 | | 104SLH23 | 109 | 104 | 244,500 | 1772 | 1712 | 1644 | 1578 | 1514 | 1418 | 1331 | 1251 | 1178 | 1112 | 1050 | 993 | 942 | 893 | 848 | 806 | | | | | | 819 | 768 | 721 | 678 | 638 | 578 | 526 | 480 | 439 | 403 | 370 | 341 | 315 | 291 | 270 | 250 | | | | | 112-146 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | | 112LSH19 | 67 | 112 | 137,850 | 935 | 900 | 846 | 795 | 750 | 708 | 669 | 636 | 603 | 573 | 543 | 518 | 494 | 471 | 450 | 429 | | | | | | 466 | 439 | 398 | 362 | 330 | 302 | 276 | 255 | 234 | 216 | 200 | 186 | 172 | 160 | 149 | 140 | | 112SLH20 | 76 | 112 | 156,000 | 1065 | 1032 | 974 | 915 | 863 | 815 | 771 | 732 | 695 | 660 | 626 | 597 | 569 | 542 | 518 | 495 | | 112SLH21 | 91 | 112 | 196,500 | 528
1337 | 497
1287 | 450
1208 | 410
1136 | 374
1070 | 342
1010 | 313
956 | 288
905 | 266
858 | 245
815 | 227
774 | 210
737 | 195
702 | 181
669 | 169
639 | 158
611 | | 1123L1121 | 91 | 112 | 190,500 | 650 | 612 | 555 | 504 | 460 | 421 | 386 | 355 | 327 | 301 | 279 | 259 | 240 | 224 | 208 | 195 | | 112SLH22 | 104 | 112 | 220,500 | 1499 | 1451 | 1377 | 1307 | 1236 | 1167 | 1104 | 1046 | 992 | 942 | 894 | 852 | 812 | 774 | 738 | 705 | | | | | , | 755 | 711 | 644 | 586 | 535 | 489 | 449 | 412 | 380 | 350 | 324 | 301 | 279 | 260 | 242 | 226 | | 112SLH23 | 110 | 112 | 243,000 | 1653 | 1601 | 1518 | 1439 | 1352 | 1272 | 1200 | 1134 | 1074 | 1019 | 966 | 918 | 873 | 831 | 792 | 756 | | | | | | 790 | 744 | 674 | 613 | 560 | 512 | 469 | 431 | 397 | 367 | 340 | 315 | 292 | 272 | 253 | 236 | | 112SLH24 | 131 | 112 | 288,000 | 1956 | 1895 | 1799 | 1709 | 1611 | 1521 | 1439 | 1364 | 1293 | 1229 | 1167 | 1112 | 1059 | 1010 | 963 | 920 | | | | | | 957 | 901 | 817 | 743 | 678 | 620 | 569 | 523 | 481 | 444 | 411 | 381 | 354 | 329 | 307 | 287 | | 400011100 | 77 | 100 | 102-164 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | 230 | 235 | 240 | 405 | | 120SLH20 | 77 | 120 | 148,350 | 896 | 846
393 | 798
361
| 758
332 | 719
306 | 684
282 | 651 | 621
242 | 593
225 | 564
209 | 539
195 | 516 | 494 | 473 | 453
149 | 435
140 | | 120SLH21 | 92 | 120 | 184,500 | 430
1122 | 1059 | 1001 | 948 | 899 | 855 | 261
813 | 774 | 738 | 704 | 672 | 182
642 | 170
615 | 159
588 | 564 | 540 | | 120OLH21 | 32 | 120 | 104,500 | 530 | 485 | 444 | 409 | 376 | 347 | 321 | 298 | 277 | 258 | 240 | 224 | 209 | 196 | 184 | 173 | | 120SLH22 | 104 | 120 | 211,500 | 1283 | 1223 | 1155 | 1094 | 1038 | 987 | 939 | 894 | 852 | 813 | 776 | 743 | 710 | 680 | 651 | 624 | | | | | , , , , | 616 | 564 | 516 | 475 | 438 | 404 | 374 | 347 | 322 | 300 | 279 | 261 | 244 | 228 | 214 | 201 | | 120SLH23 | 111 | 120 | 234,000 | 1415 | 1347 | 1272 | 1206 | 1145 | 1088 | 1035 | 986 | 939 | 894 | 854 | 815 | 779 | 744 | 713 | 683 | | | | | | 644 | 590 | 541 | 497 | 458 | 423 | 391 | 363 | 336 | 313 | 292 | 272 | 255 | 238 | 224 | 210 | | 120SLH24 | 132 | 120 | 277,500 | 1676 | 1593 | 1505 | 1425 | 1353 | 1287 | 1224 | 1166 | 1112 | 1059 | 1013 | 968 | 926 | 887 | 849 | 815 | | | .=- | | | 781 | 715 | 655 | 603 | 555 | 512 | 474 | 440 | 408 | 380 | 354 | 330 | 309 | 289 | 271 | 255 | | 120SLH25 | 152 | 120 | 318,000 | 1926 | 1827 | 1728 | 1638 | 1554 | 1476 | 1404 | 1337 | 1275 | 1217 | 1163 | 1112 | 1064 | 1017 | 975 | 935 | | | | | | 915 | 837 | 768 | 706 | 650 | 600 | 555 | 515 | 478 | 445 | 415 | 387 | 362 | 339 | 318 | 298 | ### VULCRAFT LOAD TABLE SUPER LONGSPAN STEEL JOISTS, ASD SLH-SERIES **JANUARY 1, 2007** Based on a 50 ksi Maximum Yield Strength The black figures in the following table give the TOTAL safe uniformly-distributed load-carrying capacities, in pounds per linear foot, of **ASD SLH-Series** Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. All loads shown are for roof construction only. The red figures in this table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the red figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded. This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the design capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/4 inch per foot. If pitch exceeds this standard, the load table does not apply. This load table may be used for parallel chord joists installed to a maximum slope of 1/2 inch per foot. When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to reduction of chord areas. The top chords are considered as being stayed laterally by the roof deck. The approximate joist weights per linear foot shown in these table do not include accessories. When erecting SLH joists, hoisting cables shall not be released until all rows of bridging are completely installed. To solve for **live** loads for clear spans shown in the shaded area (or lesser clear spans), multiply the live load of the shortest clear span shown in the Load tables by (the shortest clear span shown in the Load table + 0.67 feet)² and divide by (the actual clear span +.067 feet)². The live load shall **not** exceed the safe uniform load. ^{**}For spans between those listed use a linear interpolation. | | Approx. Wt. |-------------|---------------|--------|------------|------|------|-----|-----|-----|-----|--------|----------|-------|-----|-----|-----|-----|-----|-----|-----| | | In Lbs. per | Depth | Safe Load* | | | | | | | | | | | | | | | | | | Joist | Linear Ft. | In | In Lbs. | | | | | | CL | ear sp | PAN IN I | EET** | | | | | | | | | Designation | (Joists Only) | Inches | Between | 80-110 | 111 | 114 | 117 | 120 | 123 | 126 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | | | 80SLH15 | 40 | 80 | 52,000 | 466 | 442 | 421 | 401 | 383 | 366 | 350 | 335 | 321 | 307 | 295 | 283 | 272 | 261 | 244 | 228 | | | | | | 321 | 296 | 275 | 255 | 236 | 220 | 205 | 192 | 179 | 167 | 157 | 147 | 139 | 130 | 118 | 107 | | 80SLH16 | 46 | 80 | 62,500 | 560 | 535 | 509 | 485 | 461 | 439 | 419 | 400 | 383 | 366 | 350 | 336 | 322 | 309 | 289 | 271 | | | | | | 375 | 347 | 321 | 297 | 276 | 257 | 240 | 224 | 209 | 196 | 184 | 172 | 162 | 162 | 138 | 126 | | 80SLH17 | 53 | 80 | 72,200 | 647 | 617 | 587 | 559 | 533 | 510 | 487 | 466 | 446 | 427 | 410 | 393 | 378 | 363 | 340 | 319 | | | | | | 451 | 416 | 386 | 358 | 332 | 309 | 288 | 269 | 252 | 235 | 221 | 207 | 195 | 183 | 166 | 151 | | 80SLH18 | 60 | 80 | 81,600 | 731 | 696 | 662 | 631 | 602 | 575 | 550 | 526 | 504 | 482 | 463 | 444 | 427 | 410 | 384 | 361 | | | | | | 516 | 477 | 441 | 409 | 380 | 354 | 330 | 308 | 288 | 270 | 253 | 237 | 223 | 210 | 190 | 173 | | 80SLH19 | 67 | 80 | 95,200 | 853 | 812 | 773 | 736 | 701 | 670 | 640 | 612 | 585 | 560 | 537 | 516 | 495 | 476 | 445 | 418 | | | | | · | 578 | 533 | 493 | 458 | 425 | 396 | 369 | 344 | 322 | 301 | 283 | 266 | 250 | 235 | 213 | 193 | | 80SLH20 | 75 | 80 | 107,000 | 964 | 921 | 882 | 845 | 807 | 771 | 736 | 704 | 674 | 645 | 618 | 594 | 570 | 547 | 513 | 481 | | | | | | 646 | 596 | 552 | 512 | 475 | 443 | 412 | 385 | 360 | 337 | 316 | 297 | 279 | 263 | 238 | 216 | | | | | 88-119 | 120 | 123 | 126 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | | 88SLH16 | 46 | 88 | 62,000 | 514 | 490 | 467 | 447 | 428 | 410 | 394 | 378 | 363 | 349 | 335 | 314 | 295 | 278 | 262 | 248 | | | | | | 361 | 336 | 313 | 291 | 272 | 254 | 238 | 223 | 210 | 197 | 186 | 168 | 153 | 140 | 127 | 117 | | 88SLH17 | 51 | 88 | 70,100 | 581 | 553 | 526 | 502 | 479 | 458 | 439 | 420 | 403 | 386 | 371 | 347 | 326 | 306 | 288 | 271 | | | | | | 404 | 375 | 349 | 325 | 304 | 284 | 266 | 249 | 234 | 220 | 207 | 187 | 170 | 156 | 143 | 130 | | 88SLH18 | 58 | 88 | 80,400 | 667 | 635 | 605 | 577 | 551 | 527 | 504 | 483 | 463 | 444 | 426 | 399 | 374 | 352 | 331 | 312 | | | | | · | 460 | 427 | 397 | 370 | 346 | 323 | 303 | 284 | 267 | 250 | 236 | 214 | 195 | 177 | 162 | 149 | | 88SLH19 | 65 | 88 | 93,000 | 771 | 734 | 699 | 666 | 636 | 608 | 582 | 557 | 534 | 513 | 492 | 461 | 432 | 406 | 382 | 360 | | | | | | 521 | 484 | 450 | 420 | 392 | 367 | 343 | 322 | 302 | 284 | 267 | 243 | 221 | 201 | 184 | 169 | | 88SLH20 | 76 | 88 | 107,000 | 889 | 854 | 821 | 789 | 755 | 723 | 694 | 665 | 639 | 614 | 590 | 553 | 520 | 489 | 461 | 435 | | | | | | 623 | 579 | 539 | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 290 | 264 | 241 | 220 | 202 | | 88SLH21 | 89 | 88 | 132,000 | 1099 | 1045 | 996 | 950 | 907 | 867 | 829 | 794 | 762 | 731 | 702 | 657 | 616 | 579 | 544 | 513 | | | | | | 724 | 673 | 626 | 584 | 545 | 509 | 477 | 447 | 420 | 395 | 372 | 337 | 307 | 280 | 256 | 235 | ^{*}The safe load for the clear spans shown in the shaded section is equal to (Safe Load) / (Clear Span + 0.67). [The added 0.67 feet (8 inches) is required to obtain the proper length on which the Load Tables were developed.] In no case shall the safe uniform load, for clear spans less than the minimum clear span shown in the shaded area, exceed the uniform load calculated for the minimum clear span listed in the shaded area. ### VULCRAFT LOAD TABLE SUPER LONGSPAN STEEL JOISTS, SLH-SERIES Based on a 50 ksi Maximum Yield Strength | | Approx. Wt. |--------------|---------------|--------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | In Lbs. per | Depth | Safe Load | † | | | | | | | | | | | | | | | | | Joist | Linear Ft. | ln
 | In Lbs. | | | | | | CL | EAR SP | PAN IN | FEET** | | | | | | | | | Designation | (Joists Only) | Inches | | 100 | 400 | 405 | 400 | 444 | 444 | 4.47 | 450 | 455 | 400 | 405 | 470 | 475 | 400 | 405 | 100 | | 00011147 | 50 | 00 | 96-128 | 129 | 132 | 135 | 138 | 141 | 144 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | | 96SLH17 | 52 | 96 | 70,000 | 540 | 517 | 496 | 474 | 456 | 438 | 421 | 405 | 380 | 357 | 335 | 316 | 298 | 281 | 266 | 252 | | 96SLH18 | 58 | 96 | 78,800 | 389
608 | 363
583 | 339
559 | 318
535 | 298
513 | 280
493 | 263
475 | 247
457 | 224
430 | 204
405 | 186
381 | 170
360 | 156
340 | 143
322 | 132
305 | 122
289 | | 903LI116 | 56 | 90 | 70,000 | 443 | 413 | 386 | 362 | 340 | 319 | 300 | 282 | 256 | 232 | 212 | 194 | 178 | 163 | 150 | 139 | | 96SLH19 | 66 | 96 | 94,200 | 727 | 697 | 667 | 638 | 611 | 585 | 561 | 539 | 505 | 474 | 445 | 419 | 396 | 373 | 353 | 334 | | JOOLITIS | 00 | 00 | 04,200 | 502 | 469 | 438 | 410 | 385 | 361 | 340 | 320 | 290 | 264 | 241 | 220 | 202 | 186 | 171 | 158 | | 96SLH20 | 74 | 96 | 106,000 | 824 | 789 | 754 | 722 | 691 | 662 | 635 | 610 | 571 | 536 | 504 | 475 | 448 | 423 | 400 | 378 | | | | | , | 569 | 531 | 496 | 465 | 436 | 409 | 385 | 362 | 329 | 299 | 272 | 249 | 229 | 210 | 193 | 178 | | 96SLH21 | 90 | 96 | 133,000 | 1027 | 982 | 940 | 900 | 864 | 829 | 797 | 766 | 719 | 675 | 635 | 598 | 564 | 533 | 504 | 477 | | | | | | 698 | 652 | 610 | 571 | 535 | 503 | 473 | 445 | 404 | 367 | 335 | 306 | 281 | 258 | 238 | 220 | | 96SLH22 | 102 | 96 | 149,000 | 1150 | 1108 | 1067 | 1028 | 991 | 957 | 921 | 886 | 832 | 782 | 736 | 694 | 656 | 620 | 587 | 556 | | | | | | 811 | 757 | 708 | 663 | 622 | 584 | 549 | 517 | 469 | 426 | 389 | 355 | 326 | 300 | 276 | 255 | | | | | 104-137 | 138 | 141 | 144 | 147 | 150 |
155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | | 104SLH18 | 59 | 104 | 76,800 | 554 | 532 | 512 | 489 | 472 | 444 | 418 | 396 | 374 | 354 | 335 | 318 | 302 | 287 | 273 | 260 | | 404011140 | 07 | 104 | 00.400 | 426 | 400 | 375 | 353 | 332 | 301 | 274 | 250 | 229 | 209 | 192 | 177 | 164 | 152 | 140 | 130 | | 104SLH19 | 67 | 104 | 93,400 | 674 | 647 | 622 | 598 | 574 | 539 | 507 | 479 | 452 | 427 | 404 | 383 | 364 | 346 | 325 | 312 | | 10/10/1 1100 | 75 | 104 | 105,000 | 484 | 453 | 426
714 | 401 | 377
661 | 342 | 311 | 284 | 260 | 238 | 218 | 201 | 186 | 172
391 | 160 | 148 | | 104SLH20 | 75 | 104 | 105,000 | 764
548 | 738
513 | 714
483 | 688
453 | 427 | 621
387 | 583
352 | 548
321 | 516
293 | 487
269 | 460
247 | 435
228 | 413
210 | 195 | 371
181 | 353
167 | | 104SLH21 | 90 | 104 | 132,000 | 956 | 917 | 881 | 847 | 813 | 763 | 718 | 677 | 639 | 604 | 571 | 541 | 514 | 488 | 464 | 441 | | 10401121 | 30 | 104 | 102,000 | 673 | 632 | 593 | 558 | 525 | 476 | 433 | 395 | 361 | 331 | 301 | 280 | 259 | 240 | 222 | 206 | | 104SLH22 | 104 | 104 | 148,000 | 1071 | 1034 | 999 | 966 | 934 | 883 | 830 | 783 | 738 | 698 | 660 | 626 | 594 | 564 | 536 | 511 | | | | | , | 783 | 734 | 689 | 648 | 610 | 553 | 503 | 459 | 420 | 385 | 353 | 326 | 301 | 278 | 258 | 240 | | 104SLH23 | 109 | 104 | 163,000 | 1181 | 1141 | 1096 | 1052 | 1009 | 945 | 887 | 834 | 785 | 741 | 700 | 662 | 628 | 595 | 565 | 537 | | | | | | 819 | 768 | 721 | 678 | 638 | 578 | 526 | 480 | 439 | 403 | 370 | 341 | 315 | 291 | 270 | 250 | | | | | 112-146 | 147 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | | 112LSH19 | 67 | 112 | 91,900 | 623 | 600 | 564 | 530 | 500 | 472 | 446 | 424 | 402 | 382 | 362 | 345 | 329 | 314 | 300 | 286 | | | | | | 466 | 439 | 398 | 362 | 330 | 302 | 276 | 255 | 234 | 216 | 200 | 186 | 172 | 160 | 149 | 140 | | 112SLH20 | 76 | 112 | 104,000 | 710 | 688 | 649 | 610 | 575 | 543 | 514 | 488 | 463 | 440 | 417 | 398 | 379 | 361 | 345 | 330 | | 11201 1121 | 91 | 110 | 121 000 | 528
891 | 497 | 450
805 | 410
757 | 374
713 | 342
673 | 313
637 | 288 | 266
572 | 245
543 | 227
516 | 210
491 | 195
468 | 181
446 | 169 | 158
407 | | 112SLH21 | 91 | 112 | 131,000 | 650 | 858
612 | 555 | 504 | 460 | 421 | 386 | 603
355 | 327 | 301 | 279 | 259 | 240 | 224 | 426
208 | 195 | | 112SLH22 | 104 | 112 | 147,000 | 999 | 967 | 918 | 871 | 824 | 778 | 736 | 697 | 661 | 628 | 596 | 568 | 541 | 516 | 492 | 470 | | 112001122 | 107 | 112 | 147,000 | 755 | 711 | 644 | 586 | 535 | 489 | 449 | 412 | 380 | 350 | 324 | 301 | 279 | 260 | 242 | 226 | | 112SLH23 | 110 | 112 | 162,000 | 1102 | 1067 | 1012 | 959 | 901 | 848 | 800 | 756 | 716 | 679 | 644 | 612 | 582 | 554 | 528 | 504 | | | | | , | 790 | 744 | 674 | 613 | 560 | 512 | 469 | 431 | 397 | 367 | 340 | 315 | 292 | 272 | 253 | 236 | | 112SLH24 | 131 | 112 | 192,000 | 1304 | 1263 | 1199 | 1139 | 1074 | 1014 | 959 | 909 | 862 | 819 | 778 | 741 | 706 | 673 | 642 | 613 | | | | | | 957 | 901 | 817 | 743 | 678 | 620 | 569 | 523 | 481 | 444 | 411 | 381 | 354 | 329 | 307 | 287 | | | | | 102-164 | 165 | 170 | 175 | 180 | 185 | 190 | 195 | 200 | 205 | 210 | 215 | 220 | 230 | 235 | 240 | | | 120SLH20 | 77 | 120 | 98,900 | 597 | 564 | 532 | 505 | 479 | 456 | 434 | 414 | 395 | 376 | 359 | 344 | 329 | 315 | 302 | 290 | | 400011101 | 00 | 400 | 400.000 | 430 | 393 | 361 | 332 | 306 | 282 | 261 | 242 | 225 | 209 | 195 | 182 | 170 | 159 | 149 | 140 | | 120SLH21 | 92 | 120 | 123,000 | 748 | 706 | 667 | 632 | 599 | 570 | 542 | 516 | 492 | 469 | 448 | 428 | 410 | 392 | 376 | 360 | | 1200 ⊔22 | 104 | 120 | 141,000 | 530
855 | 485
915 | 444
770 | 409 | 376 | 347 | 321
626 | 298
596 | 277
568 | 258
542 | 240
517 | 224 | 209 | 196 | 184 | 173
416 | | 120SLH22 | 104 | 120 | 141,000 | 616 | 815
564 | 770
516 | 729
475 | 692
438 | 658
404 | 374 | 347 | 568
322 | 542
300 | 517
279 | 495
261 | 473
244 | 453
228 | 434
214 | 201 | | 120SLH23 | 111 | 120 | 156,000 | 943 | 898 | 848 | 804 | 763 | 725 | 690 | 657 | 626 | 596 | 569 | 543 | 519 | 496 | 475 | 455 | | .2002.120 | | 0 | 100,000 | 644 | 590 | 541 | 497 | 458 | 423 | 391 | 363 | 336 | 313 | 292 | 272 | 255 | 238 | 224 | 210 | | 120SLH24 | 132 | 120 | 185,000 | | 1062 | | 950 | 902 | 858 | 816 | 777 | 741 | 706 | 675 | 645 | 617 | 591 | 566 | 543 | | | | | , | 781 | 715 | 655 | 603 | 555 | 512 | 474 | 440 | 408 | 380 | 354 | 330 | 309 | 289 | 271 | 255 | | 120SLH25 | 152 | 120 | 212,000 | 1284 | | | 1092 | 1036 | 984 | 936 | 891 | 850 | 811 | 775 | 741 | 709 | 678 | 650 | 623 | | | | | | 915 | 837 | 768 | 706 | 650 | 600 | 555 | 515 | 478 | 445 | 415 | 387 | 362 | 339 | 318 | 298 | JANUARY 1, 1991 REVISED JANUARY 1, 2007 ### SECTION 200. SCOPE These specifications cover the design, manufacture and use of Super Longspan Steel Joists SLH Series. # SECTION 201. DEFINITION The term "Super Longspan Steel Joists SLH Series" as used herein, refers to open web, load-carrying members utilizing hot-rolled steel. SLH series are suitable for the direct support of roof decks in buildings. The design for SLH Series joist chord or web sections shall be based on a yield strength of at least 36,000 psi, but not greater than 50,000 psi. Steel used for SLH Series joist chord or web sections shall have a minimum yield strength determined in accordance with one of the procedures specified in Section 202.2, which is equal to the yield strength assumed in the design. SLH Series joists shall be designed in accordance with these specifications to support the loads given in the attached Standard Load Tables for SLH Series joists. # SECTION 202. MATERIALS ### **202.1 STEEL** The steel used in the manufacture of chord and web sections shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength, Low-Alloy Structural Steel, ASTM A242/A242M. - High-Strength Carbon-Manganese Steel of Structural Quality ASTM A529/A529M, Grade 50. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M Grade 42, 45, and 50. - High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 inches (102 mm) thick, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Corrosion Resistance, ASTM A606. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 102.2. ### **202.2 MECHANICAL PROPERTIES** The yield strength used as a basis for the design stresses prescribed in Section 203 shall be at least 36,000 psi, but shall not be greater than 50,000 psi. Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. In the case of material, the mechanical properties of which conform to the requirements of one of the listed specifications, test specimens and procedure shall conform to those of such specifications and to ASTM A370. In the case of material, the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedure shall conform to the applicable requirements of ASTM A370 and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches for sheet and strip or (b) 18 percent in 8 inches for plates, shapes and bars with adjustments for thickness for plates, shapes, and bars as prescribed in ASTM A36/A36M, A242/A242M, A529/A529M, A572/A572M, and A588/A588M whichever specification is applicable on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6 for plates, shapes, and bars; and ASTM A570/A570M, A606, AND A607 for the sheet and strip. ### 202.3 WELDING ELECTRODES The following electrodes shall be used for arc welding: (a) For connected members both having a specified minimum yield strength greater than 36,000 psi AWS A5.1 or A5.5, E70XX AWS A5.17, F7X, EXXX flux electrode combination AWS A5.18. E70S-X or E70U-1 AWS A5.20, E70T-X (b) For connected members both having a specified minimum yield strength of 36,000 psi or one having a specified minimum yield strength of 36,000 psi and the other having a specified minimum yield strength greater than 36,000 psi AWS A5.1, E60XX AWS A5.17, F6X-EXXX flux electrode combination AWS A5.20, E6O0T-X or any of those listed in Section 202.3 (a) Other welding methods, providing equivalent strength as demonstrated by tests, may be used. ### **202.4 PAINT** The Standard shop paint is a **primer coat** intended to protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. The Standard shop paint shall conform to one of the following: (a) Steel Structures Painting Council Specification, SSPC No. 15. (b) Or, shall be a shop paint which meets the minimum performance requirements of one of the above listed specifications. # SECTION 203. DESIGN AND MANUFACTURE ### **203.1 METHOD** Joists shall be designed in accordance with these specifications as simply supported uniformly loaded trusses supporting a roof deck so
constructed as to brace the top chord of the joists against lateral buckling. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the American Institute of Steel Construction Specification for the Design, Fabrication and Erection of Structural Steel for Buildings, latest adoption, where the material used consists of plates, shapes or bars. ### **Design Basis:** Designs shall be made according to the provisions in this Specification for either Load and Resistance Factor Design (LRFD) or for Allowable Strength Design (ASD). ### **Load Combinations:** ### LRFD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed for the factored loads based on the factors and load combinations as follows: 1.4D $1.2D + 1.6 (L, or L_r, or S, or R)$ ### ASD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed based on the load combinations as follows: D $D + (L, or L_r, or S, or R)$ ### Where: D = dead load due to the weight of the structural elements and the permanent features of the structure L = live load due to occupancy and movable equipment $L_r = roof live load$ S = snow load R = load due to initial rainwater or ice exclusive of the ponding contribution When special loads are specified and the specifying professional does not provide the load combinations, the provisions of ASCE 7, "Minimum Design Loads for Buildings and Other Structures" shall be used for LRFD and ASD load combinations. ### 203.2 DESIGN AND ALLOWABLE STRESSES ### Design Using Load and Resistance Factor Design (LRFD) Joists shall have their components so proportioned that the required stresses, f_u , shall not exceed ϕF_n where, f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) φ = resistance factor $\phi F_n = design stress$ ### **Design Using Allowable Strength Design (ASD)** Joists shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where, f = required stress ksi (MPa) $F_n = nominal stress$ ksi (MPa) Ω = safety factor $F_n/Ω$ = allowable stress ### Stresses: (a) **Tension:** $\phi_t = 0.90 \text{ (LRFD)} \ \Omega_t = 1.67 \text{ (ASD)}$ For Chords: $F_v = 50$ ksi (345 MPa) For Webs: $F_v = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_v = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $0.9F_v$ (LRFD) (203.2-1) Allowable Stress = $0.6F_v$ (ASD) (203.2-2) (b) Compression: ϕ_c = 0.90 (LRFD) Ω_c = 1.67 (ASD) For members with $K \ell / r \le 4.71 \sqrt{E/QF_y}$ $$F_{cr} = Q \left[0.658^{\left(\frac{QF_y}{F_e}\right)} \right] F_y$$ (203.2-3) For members with $K\ell/r > 4.71\sqrt{E/QF_v}$ $$F_{cr} = 0.877F_{e}$$ (203.2-4) Where, F_e = elastic buckling stress determined in accordance with Equation 203.2-5. $$F_{e} = \frac{\pi^{2}E}{\left(\frac{K\ell}{r}\right)^{2}}$$ (203.2-5) For hot-rolled sections, "Q" is the full reduction factor for slender compression elements. Design Stress = $0.9F_{cr}$ (LRFD) (203.2-6) Allowable Stress = $0.6F_{cr}$ (ASD) (203.2-7) In the above equations, ℓ is taken as the distance in inches (millimeters) between panel points for the chord members and the appropriate length for web members, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). Use 1.2 ℓ/r_x for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member; where = r_x member radius of gyration in the plane of the joist. For cold-formed sections the method of calculating the nominal column strength is given in the AISI, North American Specification for the Design of Cold-Formed Steel Structural Members. (c) Bending: $\phi_b = 0.90 \text{ (LRFD) } \Omega_6 = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_v = 50 \text{ ksi } (345 \text{ MPa})$ Design Stress = $0.9F_v$ (LRFD) (203.2-8) Allowable Stress = $0.6F_v$ (ASD) (203.2-9) For web members of solid round cross section: $F_v = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_v = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $1.45F_v$ (LRFD) (203.2-10) Allowable Stress = $0.95F_v$ (ASD) (203.2-11) For bearing plates: $F_v = 50 \text{ ksi } (345\text{MPa}), \text{ or } F_v = 36 \text{ ksi } (250\text{MPa})$ Design Stress = $1.35F_v$ (LRFD) (203.2-12) Allowable Stress = $0.9F_v$ (ASD) (203.2-13) ### (d) Weld Strength: Shear at throat of fillet welds: Nominal Shear Stress = $F_{nw} = 0.6F_{exx}$ (203.2-14) **LRFD:** $\phi_{w} = 0.75$ Design Shear Strength = $\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A$ (203.2-15) **ASD:** $\Omega_{\rm w} = 2.0$ Allowable Shear Strength = $R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A$ (203.2-16) A = effective throat area Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations.....F_{exx} = 70 ksi (483 MPa) Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations.....F_{exx} = 60 ksi (414 MPa) Tension or compression on groove or butt welds shall be the same as those specified for the connected material. ### **203.3 MAXIMUM SLENDERNESS RATIOS** The slenderness ratios, 1.0 ℓ / r and 1.0 ℓ _s /r of members as a whole or any component part shall not exceed the values given in Table 203.3-1, Parts A. The effective slenderness ratio, $K \ell/r^*$, to be used in calculating the nominal stresses F_{cr} and F'_{e} , is the largest value as determined from Table 203.3-1, Parts B and C. In compression members when fillers or ties are used, they shall be spaced so that the ℓ_s/r_z ratio of each component does not exceed the governing ℓ/r ratio of the member as a whole. The terms used in Table 203.3-1 are defined as follows: - ℓ = Length center-to-center of panel points, except ℓ = 36 in. (914 mm) for calculating ℓ/r_y of top chord member. - ℓ_s = maximum length center-to-center between panel point and filler (tie), or between adjacent fillers (ties). - r_x = member radius of gyration in the plane of the joist. - r_y = member radius of gyration out of the plane of the joist. - r_z = least radius of gyration of a member component. - * See P.N. Chod and T. V. Galambos, Compression Chords Without Fillers in Longspan Steel Joists, Research Report No. 36, June 1975 Structural Division, Civil Engineering Department, Washington University, St. Louis, MO. # TABLE 203.3-1 MAXIMUM AND EFFECTIVE SLENDERNESS RATIOS ### I TOP CHORD INTERIOR PANEL A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ/r , of members as a whole or any component part shall not exceed 90. B. The effective slenderness ratio to determine "F_{cr}" | 1. With fillers or ties | 0.75 <i>ℓ/r_x</i> | 1.0 <i>ℓ/r_y</i> | | $1.0 \ \ell_s/r_z$ | |---|---|----------------------------|-------------------------------|--------------------| | 2. Without fillers or ties | | | 0.75 ℓ/ <i>r</i> _z | | | 3. Single component members | $0.75 \; \ell/r_{\scriptscriptstyle X}$ | 1.0 <i>ℓ/r_y</i> | | | | The effective slenderness ratio to determine "F' e" | | | | | | 1. With fillers or ties | 0.75 ℓ/ <i>r_x</i> | | | | | 2. Without fillers or ties | 0.75 ℓ/r _x | | | | $0.75 \ell/r_x$ ### II TOP CHORD END PANEL C. C. A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ/r , of members as a whole or any component part shall not exceed 120. B. The effective slenderness ratio to determine "F_{cr}" 3. Single component members | CI | | | | | |---|-----------------------------|----------------------------|----------------------------|------------------| | 1. With fillers or ties | 1.0 ℓ/ <i>r_x</i> | 1.0 <i>ℓ/r_y</i> | | $1.0~\ell_s/r_z$ | | 2. Without fillers or ties | | | 1.0 <i>ℓ/r_z</i> | | | 3. Single component members | 1.0 ℓ/ <i>r_x</i> | 1.0 <i>ℓ/r_y</i> | | | | The effective slenderness ratio to determine "F' e" | | | | | | 1. With fillers or ties | 1.0 <i>ℓ/r_x</i> | | | | | 2. Without fillers or ties | 1.0 <i>ℓ/r_x</i> | | | | | 3. Single component members | 1.0 <i>ℓ/r_x</i> | | | | | | | | | | ### **III TENSION MEMBERS - CHORDS AND WEBS** A. The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ_s/r , of members as a whole or any component part shall not exceed 240. ### IV COMPRESSION WEB MEMBERS The slenderness ratios, 1.0 ℓ/r and 1.0 ℓ/r , of members as a whole or any component part shall not exceed 200. The effective slenderness ratio to determine "Fc" | With fillers or ties | $0.75 \ \ell/r_{x}$ | $1.0 \; \ell/r_y$ | | $1.0 \ \ell_s/r_z$ | |-----------------------------|---------------------|-----------------------------|----------------------------|--------------------| | 2. Without fillers or ties | | | 1.0 <i>ℓ/r_z</i> | | | 3. Single component members | $0.75 \ \ell/r_x^*$ | 1.0 ℓ/ <i>r_y</i> | | | ^{*} Use 1.2 ℓ/r_x for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member. ### **203.4 MEMBERS** ### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the top chord about its vertical axis shall not be less than $\ell/170$ where ℓ is the spacing in inches (millimeters) between lines of bridging as specified in Section 204.5(d) The top chord shall be considered as stayed laterally by the floor slab or roof deck provided the requirements of Section 204.9(e) of this specification are met. The top chord shall be designed as a continuous member subject to combined axial and bending stresses and shall be so proportioned that ### For LRFD: at the panel point: $$f_{au} + f_{bu} \le 0.9F_v$$ (203.4-1) at the mid panel: for $\frac{f_{au}}{\phi_c F_{cr}} \ge 0.2$, $$\frac{f_{au}}{\phi_c F_{cr}} + \frac{8}{9}
\left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_{e}}\right)} \right] Q \phi_b F_y \right] \le 1.0 \quad (203.4-2)$$ for $$\frac{f_{au}}{\phi_c F_{cr}}$$ < 0.2, $$\left(\frac{f_{au}}{2\phi_c F_{cr}}\right) + \left[\frac{C_m f_{bu}}{1 - \left(\frac{f_{au}}{\phi_c F_{e}'}\right)}\right] Q\phi_b F_y \le 1.0 \quad (203.4-3)$$ $f_{au} = P_u/A = Required compressive stress, ksi (MPa)$ $P_u =$ Required axial strength using LRFD load combinations, kips (N) $f_{bu} = M_u/S =$ Required bending stress at the location under consideration, ksi (MPa) M_u = Required flexural strength using LRFD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm3) F_{cr} = Nominal axial compressive stress in ksi (MPa) based on ℓ/r as defined in Section 203.2(b) $C_m = 1 - 0.3 f_{au}/\phi F_e'$ for end panels $C_m = 1 - 0.4 f_{au}/\phi F'_e$ for interior panels F_v = Specified minimum yield strength, ksi (MPa) $$F'_{e} = \frac{\pi^{2}E}{\begin{pmatrix} K\ell/\\ r_{x} \end{pmatrix}^{2}}, \text{ ksi (MPa)}$$ Where ℓ is the panel length,in inches (millimeters), as defined in Section 203.2(b) and r_x is the radius of gyration about the axis of bending. Q = Form factor defined in Section 203.2(b) A = Area of the top chord, in. 2 , (mm 2) ### For ASD: at the panel point: $$f_a + f_b \le 0.6F_y$$ (203.4-4) at the mid panel: for $\frac{f_a}{F_a} \ge 0.2$, $$\frac{f_a}{F_a} + \frac{8}{9} \left[\frac{C_m f_b}{1 - \left(\frac{1.67 f_a}{F_e'}\right)} \right] QF_b \right] \le 1.0 \quad (203.4-5)$$ for $$\frac{f_a}{F_a}$$ < 0.2, $$\left(\frac{f_a}{2F_a}\right) + \left\lceil \frac{C_m f_b}{1 - \left(\frac{1.67 f_a}{F_e'}\right)} \right\rceil Q F_b \right\rceil \le 1.0$$ (203.4-6) f_a = P/A = Required compressive stress, ksi (MPa) P = Required axial strength using ASD load combinations, kips (N) f_b = M/S = Required bending stress at the location under consideration, ksi (MPa) M = Required flexural strength using ASD load combinations, kip-in. (N-mm) S = Elastic Section Modulus, in.3 (mm³) F_a = Allowable axial compressive stress, based on ℓ/r as defined in Section 203.2(b), ksi (MPa) F_b = Allowable bending stress; 0.6F_v, ksi (MPa) $C_m = 1 - 0.50 f_a/F_e$ for end panels $C_m = 1 - 0.67 f_a/F_e$ for interior panels ### (b) Web The vertical shears to be used in the design of the web members shall be determined from full uniform loading, but such vertical shears shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems shall be designed to resist the gravity loads supported by the member plus an additional axial load of 1½ percent of the top chord axial force. ### (c) Depth Joists can have either a top chord pitch of 1/4 inch per foot or parallel chords. The depth, for the purpose of design, in all cases shall be the depth at mid-span. Parallel chord joists must be installed with a minimum slope of 1/4 inch per foot. ### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the neutral axis of chord members may be neglected when it does not exceed the distance between the neutral axis and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of joists shall be proportioned to resist bending produced by eccentricity at the support. ### (e) Extended Ends Extended top chords or full depth cantilever ends require the special attention of the specifying engineer or architect. The magnitude and location of the design loads to be supported, the deflection requirements, and the proper bracing shall be clearly indicated on the structural drawings. ### 203.5 CONNECTIONS ### (a) Methods Joint connections and splices shall be made by attaching the members to one another by arc or resistance welding or other approved method. - 1) Welded Connections - (a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - (b) Cracks are not acceptable and shall be repaired. - (c) Thorough fusion shall exist between layers of weld metal and between weld metal and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - (d) Unfilled weld craters shall not be included in the design length of the weld. - (e) Undercut shall not exceed 1/16 inch for welds oriented parallel to the principal stress. - (f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch in any 1 inch of design weld length. - (g) Weld spatter that does not interfere with paint coverage is acceptable. ### 2) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification and for weld sampling and testing. 3) Weld inspection by Outside Agencies (See Section 204.14 of these specifications). The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 203.5 a. 1) above. Ultrasonic X-Ray, and magnetic particle testing are inappropriate for joists due to the configurations of the components and welds. ### (b) Strength Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the allowable strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. ### (c) Shop Splices Shop splices may occur at any point in chord or web members. Splices shall be designed for the member force, but not less than 50 percent of the allowable member strength. Members containing a butt weld splice shall develop an ultimatetensile force of at least 57,000 psi times the full design area of the chord or web. The term "member" shall be defined as all component parts, comprising the chord or web, at the point of splice. ### (d) Field Splices Field splices shall be bolted connections designed by the manufacturer. Splices shall be designed for the member shear and moment forces, but not less than 50 percent of the member strength. ### (e) Bridging Clips Where double angles, separated by a nominal gap, are used as chord members, the two angles must be tied together with a filler or tie at all bridging clip locations. These fillers and their connections must be capable of developing the bridging forces indicated by Section 204.6 (d). ### **203.6 CAMBER** Joists shall have approximate cambers in accordance with the following: | Top
Chord Length | TABLE 203.6.1
Double
Pitch Joists* | Parallel
Chord Joists | |---------------------|--|--------------------------| | 111'-0" | 3 1/4" | 5 1/4" | | 120'-0" | 3 1/2" | 6" | | 130'-0" | 3 7/8" | 7" | | 140'-0" | 4 1/8" | 8" | | 150'-0" | 4 3/8" | 8 3/4" | | 160'-0" | 4 3/4" | 9 1/2" | | 180'-0" | 5 1/4" | 10 1/2" | | 200'-0" | 5 7/8" | 11 3/4" | | 220'-0" | 6 1/2" | 13" | | 240'-0" | 7" | 14" | | | | | ^{*} Pitched 1 1/4 in 12" or greater ### 203.7 SHOP PAINTING Joists and accessories shall receive one shop coat of protective paint as specified in Section 202.4. ### 203.8 VERIFICATION OF DESIGN Design data on SLH series joists will be supplied to the specifying engineer upon request. # SECTION 204. APPLICATION ### **204.1 USAGE** These specifications shall apply to any type of structure where roof decks are to be supported directly by steel joists installed as herein specified. Where joists are used other than on simple spans under uniformly distributed loading, as prescribed in Section 203.1, they shall be investigated and modified if necessary to limit the unit stresses to those listed in Section 203.2. **CAUTION:** If a rigid connection of the bottom chord is to be made to the column or other support, it shall be made only after the application of the dead loads. The joist is then no longer simply supported and the system must be investigated for continuous frame action by the specifying professional. ### 204.2 SPAN The clear span of joists shall not exceed 24 times their nominal depth. ### 204.3 DEPTH The nominal depth of pitched chord joists shall be the depth at mid-span. The standard pitch of the top chord shall be 1/4 inch per foot. ### 204.4 PITCH The standard configuration for SLH Series Joists is a double pitched top chord with a pitch of 1/4 inch per foot. The double pitched design was selected for economy and positive roof drainage. ### 204.5 END SUPPORTS ### (a) Masonry and Concrete SLH Series Joists supported by masonry or concrete are to bear on steel bearing plates, and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying engineer or architect in the design of the steel bearing plate and the masonry or concrete. The ends of SLH Series Joists shall extend over the masonry or concrete support not less than the distance shown in Table 204.5.1. The plate shall be located not more than 1/2 inch from the face of the wall and shall be not less than 9 inches wide perpendicular to the length of the joist. It is to be designed by the specifying engineer or architect in compliance with the allowable unit stresses in Section A5.1 (Allowable Stress Design) of the AISC Specifications, of latest adoption. The steel bearing plate shall be furnished by other than the joist manufacturer. ### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying engineer or architect in the design of the steel support. The end of SLH Series Joists shall extend over the steel support a distance not less than that shown in Table 204.5.1. ### **TABLE 204.5.1** | Joist Section Number | Minimum Bearing Length* | |----------------------|-------------------------| | SLH 15-18 | 4" | | SLH 19-25 | 6" | ^{*}Excluding extension ### 204.6 BRIDGING ### (a) Horizontal Horizontal bridging lines shall consist of two continuous horizontal steel
members, one attached to the top chord and the other attached to the bottom chord. The *I*/r ratio of the bridging member shall not exceed 300, where *I* is the distance in inches between attachments and r is the least radius of gyration of the bridging member. ### (b) Diagonal Diagonal bridging lines shall consist of cross-bracing with l/r ratio of not more than 200, where l is the distance in inches between connections and r is the least radius of gyration of the bracing member. Where cross-bracing members are connected at their point of intersection, the l distance shall be taken as the distance in inches between connections at the point of intersection of the bracing members and the connections to the chords of the joists. ### (c) Bridging Lines Bolted diagonal bridging shall be used except when the joist spacing is less than .66 x joist depth, then bolted horizontal bridging shall be used in addition to diagonal bridging. ### (d) Spacing The maximum spacing of lines of bridging shall not exceed the values in Table 204.6.1. Bridging shall be installed near a bottom chord panel point or an extra web member shall be furnished to brace the bottom chord for the vertical component of the bridging force equal to the horizontal bracing force. See Section 204.13 for bridging required for uplift forces. ### **TABLE 204.6.1** | Joist-Section | Max. Spac. Of | Horizontal | |----------------------|--------------------------------------|--| | Number* | Lines Of Bridging | Bracing Force** | | 15 to 17 | 21'-0" | 2,700 lbs | | 18 | 21'-0" | 3,400 lbs | | 19 | 26'-0" | 3,400 lbs | | 20 | 26'-0" | 3,700 lbs | | 21 | 30'-0" | 4,200 lbs | | 22 | 30'-0" | 5,000 lbs | | 23 | 30'-0" | 5,500 lbs | | 24 | 30'-0" | 6,300 lbs | | 25 | 30'-0" | 7,100 lbs | | 21
22
23
24 | 30'-0"
30'-0"
30'-0"
30'-0" | 4,200 lbs
5,000 lbs
5,500 lbs
6,300 lbs | The number of lines of bridging is based on the joists clear span dimensions. - * Last two digits of designation shown in load table. - ** Each connection to the chord shall resist one-half of this force. ### (e) Connections Connections to the chords of the steel joists and bridging anchors shall be made by positive mechanical means and capable of resisting a horizontal force not less than that specified in Table 204.6.1. ### (f) Bottom Chord Bearing Joists It is not recommended that SLH-Series joists be used in bottom chord bearing configuration. ### 204.7 INSTALLATION OF BRIDGING All bridging and bridging anchors shall be completely installed before construction loads are placed on the joists. Bridging shall support the top and bottom chords against lateral movement during the construction period and shall hold the steel joists in the approximate position as shown on the plans. The ends of all bridging lines terminating at walls or beams shall be anchored thereto. ### 204.8 END ANCHORAGE ### (a) Masonry and Concrete Ends of SLH Series Joists resting on steel bearing plates on masonry or structural concrete shall be attached thereto as shown Table 204.8.1. ### (b) Stee Ends of SLH Series Joists resting on steel supports shall be attached thereto as shown in Table 204.8.1. In steel frames, where columns are not framed in at least two directions with structural steel members, joists at column lines shall be field bolted at the columns to provide lateral stability during construction. ### **TABLE 204.8.1 END ANCHORAGE** | Joist Section No.* | Fillet Weld | Bearing Seat Bolts | |--------------------|---------------|--------------------| | | | For Erection | | SLH 15-18 | 2 - 1/4" x 2" | 2 - 3/4" A325 | | SLH 19-25 | 2 - 1/4" x 4" | 2 - 3/4" A325 | ^{*}Last two digits of designation shown in load table. ### (c) Uplift Where uplift forces are a design consideration, roof joists shall be anchored to resist such forces. ### **204.9 JOIST SPACING** Joists shall be spaced so that the loading on each joist does not exceed the allowable load given for the particular designation and span in the Load Table. ### **204.10 ROOF DECKS** ### (a) Material Decks may consist of cast-in-place or precast concrete or gypsum, formed steel, wood or other suitable material capable of supporting the required load at the specified joist spacing. ### (b) Thickness Cast-in-place slabs shall not be less than 2 inches thick. ### (c) Bearing Slabs or decks shall bear uniformly along the top chords of the joist. ### (d) Attachments The spacing of attachments along the top chord shall not exceed 36 inches. Such attachments of the slab or deck to the top chords of joists shall be capable of resisting the following forces: ### **TABLE 204.10.1** | Joist Section Number* | Equivalent Force Required | |-----------------------|---------------------------| | 15 - 16 incl. | 300 lbs./ft. | | 17 - 19 incl. | 300 lbs./ft. | | 20 - 21 incl. | 300 lbs./ft. | | 22 - 24 incl | 420 lbs./ft. | | 25 | 520 lbs./ft. | ^{*}Last two digits of designation shown in load table. ### (e) Wood Nailers It is not recommended that SLH-Series joists be used in conjunction with wood nailers. ### (f) Joist With Standing Seam Roofing The stiffness and strength of standing-seam roof clips varies from one manufacturer to another. Therefore, some roof systems cannot be counted on to provide lateral stability to the joists which support the roof. Sufficient stability must be provided to brace the joists laterally under the full design load. The compression chord must resist the chord axial design force in the plane of the joist (i.e., x-x axis buckling) and out of the plane of the joist (i.e., y-y axis buckling). Out of plane strength may be achieved by adjusting the bridging spacing and/or increasing the compression chord area, the joist depth, and the y-axis radius of gyration. The effective slenderness ratio in the y-direction equals 0.94 L/r_v; where L is the bridging spacing. The maximum bridging spacing may not exceed that specified in Section 204.6d. ### 204.11 DEFLECTION The deflection due to the design live load shall not exceed the following: Roofs 1/360 of span where plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying engineer or architect shall give due consideration to the effects of deflection in selection of ioists. ### **204.12 PONDING** Unless a roof surface is provided with sufficient slope toward points of free drainage or adequate individual drains to prevent the accumulation of rain water, the roof system shall be investigated to assure stability under ponding conditions in accordance with Section K2 (Allowable Stress Design) of the AISC Specifications.* A top chord pitch of 1/4" or more per foot is recommended to minimize ponding. The ponding investigation shall be performed by the specifying engineer or architect. ### 204.13 UPLIFT Where uplift forces due to wind are a design requirement, these forces must be indicated on the structural drawings in terms of net uplift in pounds per square foot. When these forces are specified, they must be considered in the design of joists and bridging. A single line of bottom chord bridging must be provided near the first bottom chord panel points, whenever uplift due to wind forces is a design consideration.** ** For further information, refer to Steel Joist Institute Technical Digest #6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". ### 204.14 INSPECTION Joists shall be inspected by the manufacturer before shipment to insure compliance of materials and workmanship with the requirements of these specifications. If the purchaser wishes an inspection of the steel joists by someone other than the manufacturer's own inspectors, he may reserve the right to do so in the "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the joists at the manufacturing facility by the purchaser's inspectors at purchaser's expense. # SECTION 205. HANDLING AND ERECTION* Particular attention should be paid to the erection of Super Longspan Steel Joists. Care shall be exercised at all times to avoid damage through careless handling during unloading, storing, and erecting. Dropping of joists shall not be permitted. Each joist shall be adequately braced laterally before any loads are applied. If lateral support is provided by bridging, the bridging lines must be anchored to prevent lateral movement Hoisting cables attached at a panel point approximately 1/5 of the span from each end will minimize erection stresses in the steel joist. **The angle of the hoisting cables from the vertical shall not exceed 30 degrees.** Two cranes are recommended for spans greater than 150 feet. Hoisting cables shall not be released until all bridging lines are installed. For ease of alignment, anchorage of joist ends in accordance with Section 204.8 should follow the installation of bridging. During the construction period, the contractor shall provide means for the adequate distribution of concentrated loads so the carrying capacity of any joist is not exceeded. ^{*} For thorough coverage of this topic, refer to the Steel Joist Institute Technical Digest #9, "Handling and Erection of Steel Joists and Girders". ^{*} For further information, refer to Steel Joist Institute Technical Digest #3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads". ### WHAT ARE JOIST GIRDERS? Joist girders are primary framing members. The design is simple span, supporting equally spaced concentrated loads from open web steel joists. These concentrated loads are considered to act at the panel points of the joist girder. Joist girders are designed to allow for the efficient use of steel in longer spans for primary framing members. The following weight tables list joist girders from 20" to 96" deep and spans up to 100 feet. (For depths and lengths not listed contact Vulcraft.) The depth designation is determined by the nominal depth at the center of the
span, except for offset double pitched girders, where the depth is determined at the ridge. The standard configuration of a joist girder is parallel chord with underslung ends and bottom chord extensions. (Joist girders can be furnished in other configurations, see below.) The standard depth of bearing for joist girders is 7 1/2 inches at the end of the bearing seat.* The standard method of connecting girders to columns is two 3/4" diameter A325 bolts. A loose connection of the lower chord to the column or other support is required during erection in order to stabilize the lower chord laterally and to help brace the joist girder against overturning. CAUTION: IF A RIGID CONNECTION OF THE BOTTOM CHORD IS TO BE MADE TO COLUMN OR OTHER SUPPORT, IT IS TO BE MADE ONLY AFTER THE APPLICATION OF THE DEAD LOADS. THE JOIST GIRDER IS THEN NO LONGER SIMPLY SUPPORTED AND THE SYSTEM MUST BE INVESTIGATED FOR CONTINUOUS FRAME ACTION BY THE SPECIFYING PROFESSIONAL. Joist girders along the perimeter, with joists coming in from one side only, and those with unbalanced loads must be designed such that the reactions pass through the center of the joist girder. The weight tables list the approximate weight per linear foot for a joist girder supporting the panel point loads given by the specifying engineer. NOTE: THE WEIGHT OF THE JOIST GIRDER MUST BE INCLUDED IN THE PANEL POINT LOAD. (SEE THE EXAMPLE ON PAGE 101). For calculating the approximate deflection or checking ponding the following formula may be used in determining the approximate moment of inertia of the joist girder. $I_{\rm JG}=0.027~\rm NPLd$ Where N = number of joist spaces, P = panel point load in kips, L = joist girder length in feet and d = effective depth of the joist girder in inches. Contact Vulcraft if a more exact joist girder moment of inertia must be known. *Increase seat depth to 10" if weight of joist girder appears to the right of the stepped blue lines in the weight tables. OTHER CONFIGURATIONS G TYPE AVAILABLE ARE: DOUBLE PITCH TC, UNDERSLUNG SINGLE PITCH TC, UNDERSLUNG OFFSET DOUBLE PITCH TC, UNDERSLUNG **VG TYPE** **BG TYPE** SEE PAGE 101 FOR DESIGN EXAMPLE NOTE: JOIST GIRDER WEB CONFIGURATION MAY VARY FROM THAT SHOWN. IF EXACT CONFIGURATION IS REQUIRED CONTACT VULCRAFT. **SEE PAGE 93 FOR MOMENT CONNECTION DETAILS** ### **JOIST GIRDER NOTES** - (a) All Joist Girder dimensions shown are subject to change when required by the physical size of large Joist Girders. If changes are necessary Vulcraft will so note on the placement plans. - (b) The standard connection for Joist Girders to columns is 13/16 inch slots for 3/4 inch bolts in girder bearings. The girder erection bolts are by others. If the specifying professional wishes to use the Joist Girder bearing to transmit horizontal loads, the required amount of weld to connect the Joist Girder seat to the column should be specified. For additional information see the section of this catalog "JOIST GIRDERS IN MOMENT RESISTIVE FRAMES." (page 92) - (c) Stabilizer plates between bottom chord angles stabilize the bottom chord laterally and brace the Joist Girder against overturning during erection. (Refer to 1004.4) - (d) Joist Girder bottom chord struts do not require welding to the stabilizer plate unless required by design to transmit horizontal forces. When welding is required, the amount of weld should be specified by the specifying professional. UNLESS OTHERWISE SPECIFIED, BOTTOM CHORD STRUTS SHOULD NOT BE WELDED. - (e) Joists are connected to the girder by welding except that the joists at (or nearest) the column shall also be bolted (O.S.H.A. Sec. 1910.12 Construction Standards Sec 1518.751). - (f) The l/r_y of the bottom chord of the Joist Girder cannot exceed 240. For STANDARD Joist Girders, the specifying engineer can use the "Joist Girder Bottom Chord Brace Chart" in conjunction with the "Design Guide Weight Table/Joist Girders, G Series" to select the correct number of bottom chord braces. Joist Girders which must resist uplift, end moments, or axial bottom chord forces may require additional braces. If fixed end moments or uplift are present, the specifying professional should also specify bottom chord braces to be designed and furnished by the joist girder manufacturer. If any additional braces are required due to the compression load in the bottom chord, Vulcraft will indicate their location on the placement plans. Bottom chord braces may be either welded or bolted to the girder, but are typically welded to the joist. | JOIST GIRDER BOTTOM CHORD BRACE CHART* | | | | |--|--|--------------|---------------| | | SPAN IN FEET | | | | JOIST GIRDER | JOIST GIRDER NO BC BRACES ONE BC BRACE | | TWO BC BRACES | | WEIGHT/FT | WEIGHT/FT @ CENTERLINE @ 1/3 POIN | | @ 1/3 POINTS | | 0-22 | 0' to 24' | >24' to 49' | >49' to 73' | | 23-30 | 0' to 28' | >28' to 57' | >57' to 85' | | 31-45 | 0' to 32' | >32' to 65' | >65' to 97' | | 46-66 | 0' to 36' | >36 to 73' | >73' to 110' | | 67-87 | 0' to 41' | >41' to 82' | >82' to 123' | | 88-135 | 0' to 49' | >49' to 98' | >98' to 147' | | 136-173 | 0' to 57' | >57' to 114' | >114' to 171' | ^{*} The bottom chords must be restrained in accordance with Section 1004.5 of The SJI Specifications. ### **ECONOMY TIPS** - Designate Joist Girder with exact load required, such as 60G8N11.2K. - If Joist Girder depth is limited below the optimum depth as shown in the weight tables, use the maximum depth permitted by the building system: such as 53G8N12K (odd depths can be designed and furnished). - The Joist Girder designations shown in the weight guide are typical types included only as a guide. The specifying professional is encouraged to specify - the exact depth, span and loading that best suits the building. - A Joist Girder depth in inches approximately equal to the span in feet is often a good combination for economy. - 5. The specifying professional is urged to investigate several combinations of bay sizes and joist spaces to find the most economical combination. - 6. The following table illustrates the economy possible using this system. | Table | Table G-1 ROOF SYSTEM WEIGHT FOR RECOMMENDED BAY SIZES | | | | | | | |----------|--|--------------------|--------------------|--------------------------|--------------------|----------------|----------------| | BAY SIZE | | | Weight of joists* | + Girders** = Total (PSI | F)*** | | | | Joist | Girder | | Des | ign Load (PSF) | | Joist | Girder | | Span | Span | 35 (PSF) | 40 (PSF) | 45 (PSF) | 50 (PSF) | Space
(Ft.) | Depth
(In.) | | 40' | 40' | 1.69 + .75 = 2.44 | 1.78 + .83 = 2.61 | 1.90 + .90 = 2.80 | 2.07 + 1.03 = 3.10 | 6.67 | 48 | | 40' | 50' | 1.73 + .95 = 2.68 | 1.90 + 1.08 = 2.98 | 2.02 + 1.18 = 3.20 | 2.13 + 1.28 = 3.41 | 6.25 | 60 | | 40' | 60' | 1.69 + 1.13 = 2.82 | 1.78 + 1.30 = 3.08 | 1.90 + 1.40 = 3.30 | 2.07 + 1.53 = 3.60 | 6.67 | 72 | | 45' | 40' | 1.89 + .71 = 2.60 | 2.04 + .80 = 2.84 | 2.14 + .89 = 3.03 | 2.41 + .96 = 3.37 | 6.67 | 48 | | 45' | 50' | 1.98 + .96 = 2.94 | 2.11 + 1.09 = 3.20 | 2.22 + 1.16 = 3.38 | 2.40 + 1.29 = 3.69 | 6.25 | 60 | | 45' | 60' | 1.89 + 1.16 = 3.05 | 2.04 + 1.24 = 3.28 | 2.14 + 1.38 = 3.52 | 2.41 + 1.49 = 3.90 | 6.67 | 72 | | 50' | 40' | 2.19 + .72 = 2.91 | 2.28 + .80 = 3.08 | 2.53 + .86 = 3.39 | 2.80 + 1.06 = 3.86 | 6.67 | 48 | | 50' | 50' | 2.21 + .92 = 3.13 | 2.43 + 1.00 = 3.43 | 2.61 + 1.12 = 3.73 | 2.70 + 1.20 = 3.90 | 6.25 | 60 | | 50' | 60' | 2.19 + 1.12 = 3.31 | 2.28 + 1.22 = 3.50 | 2.53 + 1.34 = 3.87 | 2.80 + 1.50 = 4.30 | 6.67 | 72 | - * Weight of joists in pounds per square foot. - ** Weight of the joist girders in pounds per square foot. - *** Total weight of joists and joist girders in pounds per square foot. The larger bay sizes become more economical as the column heights increase and in localities with high erection labor costs. Larger bays speed construction by reducing the number of pieces and therefore the number of crane lifts. Encasing the columns for fire proofing or decoration also makes the larger bays more attractive. When a Joist Girder is used as a component of a moment resistive frame, both the design wind moment and any continuity (usually live load) moment must be specified for each end of each affected Joist Girder. Provided this information, Vulcraft will design the Joist Girder as a simply supported truss for full gravity loading. The "fixed end" moments are then applied to the Joist Girder. Using the appropriate combinations of the gravity loads, the wind moments, and/or the continuity moments, the critical member stresses are identified and the Joist Girder members are sized accordingly. The Specifying Professional shall clarify when allowable stresses are permitted to be increased or load combinations reduced. (Vulcraft does not design the Joist Girder for any dead load moments unless specifically instructed to do so on the structural drawings.) For this reason it is very important that on the structural drawings the specifying professional specify that all dead loads be applied to the Joist Girders before the bottom chord struts are welded to the stabilizer plates. One of the most important considerations of using a Joist Girder in a moment resistive frame is the connection of the Joist Girder to the column. As with a beam connection, special provisions must be made to develop the required moment capacity. As can be readily seen in Figure 1, the use of a standard Joist Girder seat results in an eccentric moment due to the depth of the seat. This moment must be resisted by the weld group connecting the Joist Girder seat to the cap plate of the column. Vulcraft has done extensive testing of the maximum eccentric top chord force capacity for joist girders. Based on this test program, the maximum horizontal load for 7.5 inch deep seats are presented in Table 1 (below) | Joist Girder (7.5" Seat) Top Chord Leg Size |
ASD
Pa* | LRFD
φP _n ∗ | |---|------------|----------------------------------| | , , | kips | kips | | 2.5" | 4 | 6 | | 3.0" | 8 | 12 | | 3.5" and larger | 10 | 15 | Table 1 If the axial load due only to the wind moment does not exceed the values in Table 1, a strap angle connecting the Joist Girders together as shown in Figure 2 can be used to resist the continuity moments, By tying the Joist Girder ends together, the Joist Girder-to-cap plate connection need only resist the wind loads, the strap angles do not transfer wind moments. The design of such a strap angle to resist the continuity moments is the responsibility of the specifying professional. When the end moments on the Joist Girders are too large for the seat to resist, it is necessary to utilize a moment plate as shown in Details A-F. The use of this simple moment plate virtually eliminates all eccentricity problems. By using the equations and Table 2 below, the specifying professional can determine the minimum Joist Girder top chord width for most Joist Girders. If the end moments are very large, the Joist Girder loads and/or spacings vary, or other special conditions exist, a more exact analysis is required. Once the Joist Girder top chord width is known, the specifying professional can easily size the moment plate and its weld requirements to complete the connection detail. EQUATION 1 (ODD NO. OF JOIST SPACES) $$A = \frac{.028P}{D} (N^2S - .67N + .67 - S)$$ EQUATION 2 (EVEN NO. OF JOIST SPACES) $$A = \frac{.028P}{D} (N^2S - .67N + .67)$$ Where: P = Panel point load (kips) N = No. of joist spaces S = Joist spacing (ft.) D = Joist Girder depth (in.) Table 2* | A | Minimum Top Chord Width | |-------------------|-------------------------| | 0.95 - 1.19 | 6" | | 1.20 - 1.78 | 7" | | 1.79 - 2.48 | 8" | | 2.49 - 3.75 | 9" | | 3.76 - 4.76 | 11" | | 4.78 - 8.44 | 13" | | Greater than 8.44 | Consult Vulcraft | Please note that this chart is to be used only for designing moment plates. It is not intended for use as a general detailing aid. *The bearing seat width may be larger than the top chord width. Contact Vulcraft if seat width is needed for determining column plate sizes. ^{*}These values are based on using 3/4 inch A325 bolts and a minimum of two 1/4 inch fillet welds 5 inches long along the sides of the seat. Vulcraft must be notified of seat forces for final seat design. Presented below are six suggested details for a moment resistive connection involving roof Joist Girders. Similar details should be utilized for longspan joists with end moments. In all cases, the bottom chord is to be connected to the column with a vertical stabilizer plate which is to be sized to carry the required load and obtain required weld (use $6 \times 6 \times 3/4$ plate minimum for Joist Girders). ### NOTES: - (1) Connections type B & C would also be recommended for floor girder details. - (2) Where a backer bar is required for groove welds, additional clearance must be provided when determining girder hold back dimension. - (3) Similar details would apply at other types of columns. - (4) Additional stiffener plates as required not shown for clarity. - (5) In all details, moment plate design and material is not by Vulcraft. # STANDARD SPECIFICATIONS ### **FOR JOIST GIRDERS** Adopted by the Steel Joist Institute November 4, 1985 Revised to November 10, 2003 - Effective March 01, 2005 SECTION 1000. ### SCOPE This specification covers the design, manufacture and use of Joist Girders. Load and Resistance Factor Design (LRFD) and Allowable Strength Design (ASD) are included in this specification. SECTION 1001. ### **DEFINITION** The term "Joist Girders", as used herein, refers to open web, load-carrying members utilizing hot-rolled or cold-formed steel, including cold-formed steel whose yield strength* has been attained by cold working. The design of Joist Girder chord and web sections shall be based on a yield strength of at least 36 ksi (250 MPa), but not greater than 50 ksi (345 MPa). Steel used for Joist Girder chord or web sections shall have a minimum yield strength determined in accordance with one of the procedures specified in Section 1002.2, which is equal to the yield strength assumed in the design. Joist Girders shall be designed in accordance with this specification to support panel point loadings. * The term "Yield Strength" as used herein shall designate the yield level of a material as determined by the applicable method outlined in paragraph 13.1, "Yield Point" and in paragraph 13.2, "Yield Strength", of ASTM Standard A370, "Standard Test Methods and Definitions for Mechanical Testing of Steel Products", or as specified in Section 1002.2 of this Specification. Standard Specifications and Weight Tables for Joist Girders Steel Joist Institute - Copyright 2005 ### SECTION 1002. ### **MATERIALS** ### 1002.1 STEEL The steel used in the manufacture of chord and web sections shall conform to one of the following ASTM Specifications: - Carbon Structural Steel, ASTM A36/A36M. - High-Strength, Low-Alloy Structural Steel, ASTM A242/A242M. - High-Strength Carbon-Manganese Steel of Structural Quality ASTM A529/A529M, Grade 50. - High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM A572/A572M Grade 42 and 50. - High-Strength Low-Alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point to 4 inches (100 mm) Thick, ASTM A588/A588M. - Steel, Sheet and Strip, High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Corrosion Resistance, ASTM A606. - Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1008/A1008M. - Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, ASTM A1011/A1011M. or shall be of suitable quality ordered or produced to other than the listed specifications, provided that such material in the state used for final assembly and manufacture is weldable and is proved by tests performed by the producer or manufacturer to have the properties specified in Section 1002.2. ### **1002.2 MECHANICAL PROPERTIES** The yield strength used as a basis for the design stresses prescribed in Section 1003 shall be at least 36 ksi (250 MPa), but shall not be greater than 50 ksi (345 MPa). Evidence that the steel furnished meets or exceeds the design yield strength shall, if requested, be provided in the form of an affidavit or by witnessed or certified test reports. For material used without consideration of increase in yield strength resulting from cold forming, the specimens shall be taken from as-rolled material. In the case of material properties of which conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to those of such specifications and to ASTM A370. In the case of material the mechanical properties of which do not conform to the requirements of one of the listed specifications, the test specimens and procedures shall conform to the applicable requirements of ASTM A370 and the specimens shall exhibit a yield strength equal to or exceeding the design yield strength and an elongation of not less than (a) 20 percent in 2 inches (51 millimeters) for sheet and strip, or (b) 18 percent in 8 inches (203 millimeters) for plates, shapes and bars with adjustments for thickness for plates, shapes and bars as prescribed in ASTM A36/A36M, A242/A242M, A529/A529M, A572/A572M, A588/A588M, whichever specification is applicable on the basis of design yield strength. The number of tests shall be as prescribed in ASTM A6/A6M for plates, shapes, and bars; and ASTM A606, A1008/A1008M and A1011/A1011M for sheet and strip. If as-formed strength is utilized, the test reports shall show the results of tests performed on full section specimens in accordance with the provisions of the AISI Specifications for the Design of Cold-Formed Steel Structural Members and shall indicate compliance with these provisions and with the following additional requirements: - a) The yield strength calculated from the test data shall equal or exceed the design yield strength. - b) Where tension tests are made for acceptance and control purposes, the tensile strength shall be at least 6 percent greater than the yield strength of the section. - c) Where compression tests are used for acceptance and control purposes, the specimen shall withstand a gross shortening of 2 percent of its original length without cracking. The length of the specimen shall not be greater than 20 times its least radius of gyration. - d) If any test specimen fails to pass the requirements of the subparagraphs (a), (b), or (c) above, as applicable, two retests shall be made of specimens from the same lot. Failure of one of the retest specimens to meet such requirements shall be the cause for rejection of the lot represented by the specimens. ### **1002.3 WELDING ELECTRODES** The following electrodes shall be used for arc welding: a) For connected members both having a specified yield strength greater than 36 ksi (250 MPa). AWS A5.1: E70XX AWS A5.5: E70XX-X AWS A5.17: F7XX-EXXX, F7XX-ECXXX flux electrode combination AWS A5.18: ER70S-X, E70C-XC, E70C-XM AWS A5.20: E7XT-X, E7XT-XM AWS A5.23: F7XX-EXXX-XX, F7XX-ECXXX-XX AWS A5.28: ER70S-XXX, E70C-XXX AWS A5.29: E7XTX-X, E7XTX-XM b) For connected members both having a specified minimum yield strength of 36 ksi (250 MPa) or one having a specified minimum yield strength of 36 ksi (250 MPa), and the other having a specified minimum yield strength greater than 36 ksi (250 MPa). AWS A5.1: E60XX AWS A5.17: F6XX-EXXX, F6XX-ECXXX flux electrode combination AWS A5.20: E6XT-X, E6XT-XM AWS A5.29: E6XTX-X, E6XT-XM or any of those listed in Section 1002.3(a). Other welding methods, providing equivalent strength as demonstrated by tests, may be used. ### 1002.4 PAINT The standard shop paint is intended to
protect the steel for only a short period of exposure in ordinary atmospheric conditions and shall be considered an impermanent and provisional coating. When specified, the standard shop paint shall conform to one of the following: - a) Steel Structures Painting Council Specification, SSPC No. 15 - b) Or, shall be a shop paint which meets the minimum performance requirements of the above listed specification. SECTION 1003. # DESIGN AND MANUFACTURE ### 1003.1 METHOD Joist Girders shall be designed in accordance with this specification as simply supported primary members. All loads shall be applied through steel joists, and will be equal in magnitude and evenly spaced along the joist girder top chord. Where any applicable design feature is not specifically covered herein, the design shall be in accordance with the following specifications: - a) Where the steel used consists of hot-rolled shapes, bars or plates, use the American Institute of Steel Construction, Specification for Structural Steel Buildings. - b) For members that are cold-formed from sheet or strip steel, use the American Iron and Steel Institute, North American Specification for the Design of Cold-Formed Steel Structural Members. ### **Design Basis:** Designs shall be made according to the provisions in this Specification for either Load and Resistance Factor Design (LRFD) or for Allowable Strength Design (ASD). ### **Load Combinations:** ### LRFD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed for the factored loads based on the factors and load combinations as follows: 1.4D 1.2D + 1.6 (L, or L_r, or S, or R) ### ASD: When load combinations are not specified to the joist manufacturer, the required stress shall be computed based on the load combinations as follows: D $D + (L, or L_r, or S, or R)$ ### Where: D = dead load due to the weight of the structural elements and the permanent features of the structure L = live load due to occupancy and movable equipment $L_r = roof live load$ S = snow load R = load due to initial rainwater or ice exclusive of the ponding contribution When special loads are specified and the specifying professional does not provide the load combinations, the provisions of ASCE 7, "Minimum Design Loads for Buildings and Other Structures" shall be used for LRFD and ASD load combinations. ### 1003.2 DESIGN AND ALLOWABLE STRESSES ### Design Using Load and Resistance Factor Design (LRFD) Joist Girders shall have their components so proportioned that the required stresses, f_w shall not exceed ϕF_n where, f_u = required stress ksi (MPa) F_n = nominal stress ksi (MPa) φ = resistance factor $\phi F_n = \text{design stress}$ ### Design Using Allowable Strength Design (ASD) Joist Girders shall have their components so proportioned that the required stresses, f, shall not exceed F_n/Ω where, f = required stress ksi (MPa) F_n = nominal stress ksi (MPa) Ω = safety factor F_n/Ω = allowable stress ### Stresses: (a) **Tension:** $\phi_t = 0.90 \text{ (LRFD)} \ \Omega_t = 1.67 \text{ (ASD)}$ For Chords: $F_v = 50$ ksi (345 MPa) For Webs: $F_v = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_v = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $0.9F_v$ (LRFD) (1003.2-1) Allowable Stress = $0.6F_v$ (ASD) (1003.2-2) **(b) Compression**: $\phi_c = 0.90$ (LRFD) $\Omega_c = 1.67$ (ASD) For members with $\frac{\ell}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$ $$F_{cr} = Q \left[0.658^{\left(\frac{QF_y}{F_e}\right)} \right] F_y \qquad (1003.2-3)$$ For members with $\frac{\ell}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ $F_{cr} = 0.877F_{e}$ (1003.2-4) Where F_e = Elastic bucking stress determined in accordance with Equation 1003.2-5. $$F_{e} = \frac{\pi^{2}E}{\left(\frac{\ell}{r}\right)^{2}}$$ (1003.2-5) For hot-rolled sections, "Q" is the full reduction factor for slender compression elements. Design Stress = $0.9F_{cr}$ (LRFD) (1003.2-6) Allowable Stress = $0.6F_{cr}$ (ASD) (1003.2-7) In the above equations, ℓ is taken as the distance, in inches (millimeters), between panel points for the chord members and the appropriate length for web members, and r is the corresponding least radius of gyration of the member or any component thereof. E is equal to 29,000 ksi (200,000 MPa). Use 1.2 ℓ/r_x for a crimped, first primary compression web member when a moment-resistant weld group is not used for this member; where r_x = member radius of gyration in the plane of the joist. For cold-formed sections, the method of calculating the nominal column strength is given in the AISI, *North American Specification for the Design of Cold-Formed Steel Structural Members*. ### (c) Bending: $\phi_b = 0.90 \text{ (LRFD) } \Omega_b = 1.67 \text{ (ASD)}$ Bending calculations are to be based on using the elastic section modulus. For chords and web members other than solid rounds: $F_v = 50 \text{ ksi } (345 \text{ MPa})$ Design Stress = $$0.90F_v$$ (LRFD) (1003.2-8) Allowable Stress = $$0.60F_v$$ (ASD) (1003.2-9) For web members of solid round cross section: $F_y = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_y = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $$1.45F_y$$ (LRFD) (1003.2-10) Allowable Stress = $$0.95F_v$$ (ASD) (1003.2-11) For bearing plates: $F_y = 50 \text{ ksi } (345 \text{ MPa}), \text{ or } F_y = 36 \text{ ksi } (250 \text{ MPa})$ Design Stress = $1.35F_v$ (LRFD) (1003.2-12) Allowable Stress = $0.90F_v$ (ASD) (1003.2-13) ### (d) Weld Strength: Shear at throat of fillet welds: Nominal Shear Stress = $F_{nw} = 0.6F_{exx}$ (1003.2-14) **LRFD:** $\phi_{w} = 0.75$ Design Shear Strength = $\phi R_n = \phi_w F_{nw} A = 0.45 F_{exx} A$ (1003.2-15) **ASD:** $\Omega_{\rm w} = 2.0$ Allowable Shear Strength = (1003.2-16) $R_n/\Omega_w = F_{nw}A/\Omega_w = 0.3F_{exx}A$ A = effective throat area Made with E70 series electrodes or F7XX-EXXX flux-electrode combinations $F_{exx} = 70 \text{ ksi } (483 \text{ MPa})$ Made with E60 series electrodes or F6XX-EXXX flux-electrode combinations $F_{\rm exx}$ = 60 ksi (414 MPa) Tension or compression on groove or butt welds shall be the same as those specified for the connected material. ### 1003.3 MAXIMUM SLENDERNESS RATIOS The slenderness ratio ℓ/r , where ℓ is the length center-to-center of support points and r is the corresponding least radius of gyration, shall not exceed the following: | Top chord interior panels | 90 | |--|-----| | Top chord end panels | 120 | | Compression members other than top chord | 200 | | Tension members | 240 | ### **1003.4 MEMBERS** ### (a) Chords The bottom chord shall be designed as an axially loaded tension member. The radius of gyration of the bottom chord about its vertical axis shall not be less than $\ell/240$ where ℓ is the distance between lines of bracing. The top chord shall be designed as an axial loaded compression member. The radius of gyration of the top chord about the vertical axis shall not be less than Span/575. The top chord shall be considered as stayed laterally by the steel joists provided positive attachment is made. ### (b) Web The vertical shears to be used in the design of the web members shall be determined from full loading, but such vertical shear shall be not less than 25 percent of the end reaction. Interior vertical web members used in modified Warren type web systems that do not support the direct loads through steel joists shall be designed to resist an axial load of 2 percent of the top chord axial force. Tension members shall be designed to resist at least 25 percent of their axial force in compression. ### (c) Fillers and Ties In compression members composed of two components, when fillers, ties or welds are used, they shall be spaced so the ℓ/r ratio for each component does not exceed the ℓ/r ratio of the member as a whole. In tension members composed of two components, when fillers, ties or welds are used, they shall be spaced so that the ℓ/r ratio of each component does not exceed 240. The least radius of gyration shall be used in computing the ℓ/r ratio of a component. ### (d) Eccentricity Members connected at a joint shall have their center of gravity lines meet at a point, if practical. Eccentricity on either side of the centroid of chord members may be neglected when it does not exceed the distance between the centroid and the back of the chord. Otherwise, provision shall be made for the stresses due to eccentricity. Ends of Joist Girders shall be proportioned to resist bending produced by eccentricity at the support. In those cases where a single angle compression member is attached to the outside of the stem of a tee or double angle chord, due consideration shall be given to eccentricity. ### (e) Extended Ends Extended top chords or full depth cantilever ends require the special attention of the specifying professional. The magnitude and location of the loads to be supported, deflection requirements, and proper bracing shall be clearly indicated on the structural drawings. ### 1003.5 CONNECTIONS ### (a) Methods Joint connections and splices shall be made by attaching the members to one another by arc or resistance welding or other accredited methods. ### (1) Welded Connections - a) Selected welds shall be inspected visually by the manufacturer. Prior to this inspection, weld slag shall be removed. - b) Cracks are not acceptable and shall be repaired. - c) Thorough fusion shall exist between layers of weld metal and between weld metal and base metal for the required design length of the weld; such fusion shall be verified by visual inspection. - d) Unfilled weld craters shall not be included in the design length of the weld. - e) Undercut shall not exceed 1/16 inch (2 millimeters) for welds oriented parallel to the principal stress. - f) The sum of surface (piping) porosity diameters shall not exceed 1/16 inch (2 millimeters) in any 1 inch (25 millimeters) of design
weld length. - g) Weld spatter that does not interfere with paint coverage is acceptable. ### (2) Welding Program Manufacturers shall have a program for establishing weld procedures and operator qualification, and for weld sampling and testing. (3) Weld Inspection by Outside Agencies (See Section 1004.10 of this specification). The agency shall arrange for visual inspection to determine that welds meet the acceptance standards of Section 1003.5(a)(1). Ultrasonic, X-Ray, and magnetic particle testing are inappropriate for Joists Girders due to the configurations of the components and welds. ### (b) Strength - (1) <u>Joint Connections</u> Joint connections shall develop the maximum force due to any of the design loads, but not less than 50 percent of the strength of the member in tension or compression, whichever force is the controlling factor in the selection of the member. - (2) Shop Splices Shop splices may occur at any point in chord or web members. Splices shall be designed for the member force but not less than 50 percent of the member strength. Members containing a butt weld splice shall develop an ultimate tensile force of at least 57 ksi (393 MPa) times the full design area of the chord or web. The term "member" shall be defined as all component parts comprising the chord or web, at the point of splice. ### (c) Field Splices Field Splices shall be designed by the manufacturer and may be either bolted or welded. Splices shall be designed for the member force, but not less than 50 percent of the member strength. ### **1003.6 CAMBER** Joist Girders shall have approximate cambers in accordance with the following: ### **TABLE 1003.6-1** | Top C | hord Length_ | Approx | <u>kimate Camber</u> | |---------|--------------|--------|----------------------| | 20'-0" | (6096 mm) | 1/4" | (6 mm) | | 30'-0" | (9144 mm) | 3/8" | (10 mm) | | 40'-0" | (12192 mm) | 5/8" | (16 mm) | | 50'-0" | (15240 mm) | 1" | (25 mm) | | 60'-0" | (18288 mm) | 1 1/2" | (38 mm) | | 70'-0" | (21336 mm) | 2" | (51 mm) | | 80'-0" | (24384 mm) | 2 3/4" | (70 mm) | | 90'-0" | (27342 mm) | 3 1/2" | (89 mm) | | 100'-0" | (30480 mm) | 4 1/4" | (108 mm) | | 110'-0" | (33528 mm) | 5" | (127 mm) | | 120'-0" | (36576 mm) | 6" | (152 mm) | The specifying professional shall give consideration to coordinating Joist Girder camber with adjacent framing. ### 1003.7 VERIFICATION OF DESIGN AND MANUFACTURE ### (a) Design Calculations Companies manufacturing Joist Girders shall submit design data to the Steel Joist Institute (or an independent agency approved by the Steel Joist Institute) for verification of compliance with the SJI Specifications. ### (b) In-Plant Inspections Each manufacturer shall verify their ability to manufacture Joist Girders through periodic In-Plant Inspections. Inspections shall be performed by an independent agency approved by the Steel Joist Institute. The frequency, manner of inspection, and manner of reporting shall be determined by the Steel Joist Institute. The In-Plant Inspections are not a guarantee of the quality of any specific Joist Girder; this responsibility lies fully and solely with the individual manufacturer. # SECTION 1004. APPLICATION ### 1004.1 USAGE This specification shall apply to any type of structure where steel joists are to be supported directly by Joist Girders installed as hereinafter specified. Where Joist Girders are used other than on simple spans under equal concentrated gravity loading, as prescribed in Section 1003.1, they shall be investigated and modified if necessary to limit the unit stresses to those listed in Section 1003.2. The magnitude and location of all loads and forces, other than equal concentrated gravity loading, shall be provided on the structural drawings. The specifying professional shall design the supporting structure, including the design of columns, connections, and moment plates*. This design shall account for the stresses caused by lateral forces and the stresses due to connecting the bottom chord to the column or other support. The designed detail of a rigid type connection and moment plates shall be shown on the structural drawings by the specifying professional. The moment plates shall be furnished by other than the joist manufacturer. * For further reference, refer to Steel Joist Institute Technical Digest #11, "Design of Joist-Girder Frames" ### 1004.2 SPAN The span of a Joist Girder shall not exceed 24 times its depth. ### 1004.3 DEPTH Joist Girders may have either parallel top chords or a top chord slope of 1/8 inch per foot (1:96). The nominal depth of sloping chord Joist Girders shall be the depth at mid-span. ### **1004.4 END SUPPORTS** ### (a) Masonry and Concrete Joist Girders supported by masonry or concrete are to bear on steel bearing plates and shall be designed as steel bearing. Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying professional in the design of the steel bearing plate and the masonry or concrete. The ends of Joist Girders shall extend a distance of not less than 6 inches (152 millimeters) over the masonry or concrete support and be anchored to the steel bearing plate. The plate shall be located not more than 1/2 inch (13 millimeters) from the face of the wall and shall be not less than 9 inches (229 millimeters) wide perpendicular to the length of the girder. The plate is to be designed by the specifying professional and shall be furnished by other than the joist manufacturer. Where it is deemed necessary to bear less than 6 inches (152 millimeters) over the masonry or concrete support, special consideration is to be given to the design of the steel bearing plate and the masonry or concrete by the specifying professional. The girders must bear a minimum of 4 inches (102 millimeters) on the steel bearing plate. ### (b) Steel Due consideration of the end reactions and all other vertical and lateral forces shall be taken by the specifying professional in the design of the steel support. The ends of Joist Girders shall extend a distance of not less than 4 inches (102 millimeters) over the steel supports and shall have positive attachment to the support, either by bolting or welding. ### **1004.5 BRACING** Joist Girders shall be proportioned such that they can be erected without bridging (See Section 1004.9 for bracing required for uplift forces). Therefore, the following requirements must be met: - a) The ends of the bottom chord are restrained from lateral movement to brace the girder from overturning. For Joist Girders at columns in steel frames, restraint shall be provided by a stabilizer plate on the column. - b) No other loads shall be placed on the Joist Girder until the steel joists bearing on the girder are in place and welded to the girder. ### 1004.6 END ANCHORAGE ### (a) Masonry and Concrete Ends of Joist Girders resting on steel bearing plates on masonry or structural concrete shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millimeters) bolts, or the equivalent. ### (b) Steel Ends of Joist Girders resting on steel supports shall be attached thereto with a minimum of two 1/4 inch (6 millimeters) fillet welds 2 inches (51 millimeters) long, or with two 3/4 inch (19 millimeters) bolts, or the equivalent. In steel frames, bearing seats for Joist Girders shall be fabricated to allow for field bolting. ### (c) Uplift Where uplift forces are a design consideration, roof Joist Girders shall be anchored to resist such forces (Refer to Section 1004.9). ### 1004.7 DEFLECTION The deflections due to the design live load shall not exceed the following: Floors: 1/360 of span. Roofs: 1/360 of span where a plaster ceiling is attached or suspended. 1/240 of span for all other cases. The specifying professional shall give consideration to the effects of deflection and vibration* in the selection of Joist Girders. * For further reference, refer to Steel Joist Institute Technical Digest #5, "Vibration of Steel Joist-Concrete Slab Floors" and the Institute's Computer Vibration Program. ### 1004.8 PONDING* The ponding investigation shall be performed by the specifying professional. * For further reference, refer to Steel Joist Institute Technical Digest #3, "Structural Design of Steel Joist Roofs to Resist Ponding Loads" and AISC Specifications. ### 1004.9 UPLIFT Where uplift forces due to wind are a design requirement, these forces must be indicated on the contract drawings in terms of NET uplift in pounds per square foot (Pascals). The contract drawings must indicate if the net uplift is based on ASD or LRFD. When these forces are specified, they must be considered in the design of Joist Girders and/or bracing. If the ends of the bottom chord are not strutted, bracing must be provided near the first bottom chord panel points whenever uplift due to wind forces is a design consideration.* * For further reference, refer to Steel Joist Institute Technical Digest #6, "Structural Design of Steel Joist Roofs to Resist Uplift Loads". ### **1004.10 INSPECTION** Joist Girders shall be inspected by the manufacturer before shipment to verify compliance of materials and workmanship with the requirements of this specification. If the purchaser wishes an inspection of the Joist Girders by someone other than the manufacturer's own inspectors, they may reserve the right to do so in their "Invitation to Bid" or the accompanying "Job Specifications". Arrangements shall be made with the manufacturer for such inspection of the Joist Girders at the manufacturing shop by the purchaser's inspectors at purchaser's expense. SECTION 1005.* # HANDLING AND ERECTION Particular attention should be paid to the erection of Joist Girders. Care shall be exercised at all times to avoid damage through careless handling during unloading, storing and erecting. Dropping of Joist Girders shall not be permitted. In steel framing, where Joist
Girders are utilized at column lines, the Joist Girder shall be field-bolted at the column. Before hoisting cables are released and before an employee is allowed on the Joist Girder the following conditions must be met: a) The seat at each end of the Joist Girder is attached in accordance with Section 1004.6. When a bolted seat connection is used for erection purposes, as a minimum, the bolts must be snug tightened. The snug tight condition is defined as the tightness that exists when all plies of a joint are in firm contact. This may be attained by a few impacts of an impact wrench or the full effort of an employee using an ordinary spud wrench. b) Where stabilizer plates are required the Joist Girder bottom chord must engage the stabilizer plate. During the construction period, the contractor shall provide means for the adequate distribution of loads so that the carrying capacity of any Joist Girder is not exceeded. Joist Girders shall not be used as anchorage points for a fall arrest system unless written direction to do so is obtained from a "qualified person".⁽¹⁾ Field welding shall not damage the Joist Girder. The total length of weld at any one cross-section on cold-formed members whose yield strength has been attained by cold working and whose as-formed strength is used in the design, shall not exceed 50 percent of the overall developed width of the cold-formed section. - * For a thorough coverage of this topic, refer to SJI Technical Digest #9, "Handling and Erection of Steel Joists and Joist Girders". - (1) See Appendix E for OSHA definition of "qualified person". SECTION 1006. # HOW TO SPECIFY JOIST GIRDERS For a given Joist Girder span, the specifying professional first determines the number of joist spaces. Then the panel point loads are calculated and a depth is selected. The following tables give the Joist Girder weight in pounds per linear foot (kiloNewtons per meter) for various depths and loads. - The purpose of the Joist Girder Design Guide Weight Table is to assist the specifying professional in the selection of a roof or floor support system. - 2. It is not necessary to use only the depths, spans, or loads shown in the tables. - Holes in chord elements present special problems which must be considered by both the specifying professional and the Joist Girder Manufacturer. The sizes and locations of such holes shall be clearly indicated on the structural drawings. # Example using <u>Load and Resistance Factor Design</u> (<u>LRFD</u>) and U. S. Customary units: ### STANDARD DESIGNATION | 44G | 8N | 17.4F | |----------|--------------|-----------------------| | Depth in | Number of | Factored Load in Kips | | Inches | Joist Spaces | at Each Panel Point | Given 42'-0" x 50'-0" bay. Joists spaced on 5'-3" centers (includes the approximate Joist Girder weight) Live Load = 30 psf x 1.6 Dead Load = 15 psf x 1.2 Total Load = 66 psf (factored) Note: Web configuration may vary from that shown. Contact Joist Girder manufacturer if exact layout must be known. - Determine number of actual joist spaces (N). In this example, N = 8 - 2. Compute total factored load: Total load = $5.25 \times 66 \text{ psf} = 346.5 \text{ plf}$ - 3. Joist Girder Section: (Interior) - a) Compute the factored concentrated load at top chord panel points $P = 346.5 \times 50 = 17,325 \text{ lbs} = 17.4 \text{ kips}$ (use 18K for depth selection). b) Select Joist Girder depth: Refer to the LRFD Joist Girder Design Guide Weight Table for the 42'-0" span, 8 panel, 18.0K Joist Girder. The rule of about one inch of depth for each foot of span is a good compromise of limited depth and economy. Therefore, select a depth of 44 inches. - c) The Joist Girder will then be designated 44G8N17.4F. Note that the letter "F" is included at the end of the designation to clearly indicate that this is a factored load. - d) The LRFD Joist Girder Design Guide Weight Table shows the weight for a 44G8N17.4K as 49 pounds per linear foot. The designer should verify that the weight is not greater than the weight assumed in the Dead Load above. e) Check live load deflection: Live load = 30 psf x 50 ft = 1500 plf Approximate Joist Girder moment of inertia = 0.018 NPLd = 0.018 x 8 x 17.4 x 42 x 44 = 4630 in.4 Allowable deflection for plastered ceilings $$= L/360 = \frac{42(12)}{360} = 1.40 \text{ in.}$$ Deflection = 1.15 $$\left\lceil \frac{5wL^4}{384EI} \right\rceil = \frac{1.15(5)(1.500/12)(42x12)^4}{384(29000)(4630)}$$ Live load deflection rarely governs because of the relatively small span-depth ratios of Joist Girders. Example using *Allowable Strength Design (ASD*) and U. S. Customary units: ### STANDARD DESIGNATION | ı | 440 | 011 | 44.014 | |----------|--------|--------------|------------------| | | 44G | 8N | 11.9K | | Depth in | | Number of | Load in Kips at | | | Inches | Joist Spaces | Fach Panel Point | Given 42'-0" x 50'-0" bay. Joists spaced on 5'-3" centers. Live Load = 30 psf Dead Load = 15 psf (includes the approximate Joist Girder weight) Total Load = 45 psf Note: Web configuration may vary from that shown. Contact Joist Girder manufacturer if exact layout must be known. 1. Determine number of actual joist spaces (N). In this example, N = 8 2. Compute total load: Total load = $5.25 \times 45 \text{ psf} = 236.25 \text{ plf}$ - 3. Joist Girder Section: (Interior) - a) Compute the concentrated load at top chord panel points P = 236.25 x 50 = 11,813 lbs = 11.9 kips (use 12K for depth selection). - b) Select Joist Girder depth: Refer to the ASD Joist Girder Design Guide Weight Table for the 42'-0" span, 8 panel, 12.0K Joist Girder. The rule of about one inch of depth for each foot of span is a good compromise of limited depth and economy. Therefore, select a depth of 44 inches. - c) The Joist Girder will then be designated 44G8N11.9K. - d) The ASD Joist Girder Design Guide Weight Table shows the weight for a 44G8N12K as 49 pounds per linear foot. The designer should verify that the weight is not greater than the weight assumed in the Dead Load above. - e) Check live load deflection: Live load = 30 psf x 50 ft = 1500 plf. Approximate Joist Girder moment of inertia Allowable deflection for plastered ceilings = L/360 = $$\frac{42(12)}{360}$$ = 1.40 in. Deflection = 1.15 $$\left\lceil \frac{5wL^4}{384EI} \right\rceil = \frac{1.15(5)(1.500/12)(42x12)^4}{384(29000)(4750)}$$ Live load deflection rarely governs because of the relatively small span-depth ratios of Joist Girders. # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Girder | Joist | Girder | | | | | | | | Jois | t Gir | der V | /eigh | t – P | ounc | ls Pe | r Line | ear Fo | oot | | | | | | |--------------|----------------|---------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Span
(ft) | Spaces
(ft) | Depth
(in) | | | | | | | | | | Loa | d on | Each | n Pan | el Po | int | | | | | | | | | | | LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | 18K | 21K | 24K | 27K | 30K | 37.5K | 45K | 52.5K | | 75K | | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | 2N@ | 16
20 | 16
16 17
16 | 18
16 | 21
17 | 23
19 | 26
22 | 30
24 | 35
31 | 41
35 | 47
39 | 54
44 | 69
56 | 83
64 | 100
76 | 108
85 | 140
104 | | | 10.00 | 24 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 19 | 20 | 26 | 29 | 34 | 37 | 48 | 57 | 66 | 73 | 88 | | | 3N@ | 16
20 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 18
16 | 20
17 | 22
19 | 24
21 | 27
23 | 31
26 | 35
28 | 38
31 | 48
38 | 54
47 | 69
56 | 79 | 101 | 114
95 | 141 | 152 | 187 | | | 6.67 | 24 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 18 | 19 | 23 | 25 | 26 | 31 | 34 | 38 | 45 | 64
51 | 78
67 | 80 | 109
97 | 117
109 | 156
122 | | | 4010 | 16 | 16 | 16 | 18 | 20 | 22 | 26 | 28 | 29 | 32 | 38 | 42 | 50 | 54 | 66 | 83 | 100 | 108 | 140 | 162 | 188 | 209 | 314 | | 20 | 4N@
5.00 | 20
24 | 16
16 | 16
16 | 16
16 | 17
16 | 20
17 | 20
19 | 21
20 | 23
21 | 26
22 | 30
25 | 34
28 | 39
32 | 43
38 | 52
44 | 60
54 | 76
61 | 85
75 | 105
89 | 124
107 | 145
126 | 169
149 | 238
189 | | | | 16 | 16 | 18 | 19 | 24 | 26 | 29 | 33 | 37 | 39 | 47 | 54 | 59 | 66 | 83 | 101 | 113 | 140 | 172 | 212 | 247 | 296 | | | | 5N@
4.00 | 20
24 | 16
16 | 16
16 | 17
17 | 19
19 | 21
20 | 26
22 | 28
24 | 29
28 | 32
28 | 37
31 | 41
35 | 49
39 | 53
45 | 65
55 | 80
67 | 95
78 | 104
88 | 134
109 | 167
128 | 198
152 | 221
183 | 296
244 | | | 4.00 | 16 | 28 | 33 | 39 | 47 | 54 | 62 | 72 | 78 | 83 | 101 | 109 | 131 | 141 | 195 | 226 | 247 | 358 | 100 | 120 | 102 | 100 | 277 | | | 10N@
2.00 | 20
24 | 23
21 | 29
25 | 31
28 | 37
32 | 43
39 | 49
43 | 56
46 | 61
55 | 64
54 | 77
66 | 86
80 | 104
84 | 108
89 | 145
119 | 179
141 | 203
171 | 236
197 | 317
250 | 212 | | | | | | 2.00 | 16 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 20 | 20 | 23 | 26 | 29 | 32 | 39 | 46 | 53 | 61 | 250
77 | 313
98 | 107 | 119 | 158 | | | 2N@ | 20 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 19 | 20 | 21 | 23 | 27 | 33 | 37 | 46 | 48 | 62 | 70 | 83 | 101 | 121 | | | 11 | 24
16 | 19
15 | 19
15 | 19
15 | 19
16 | 19
17 | 19
19 | 19
23 | 19
24 | 19
25 | 19
29 | 20
33 | 21
37 | 24
40 | 29
53 | 33
61 | 36
73 | 42
90 | 49
103 | 63
129 | 72
149 | 81
170 | 103
207 | | | 3N@ | 20 | 16 | 16 | 16 | 16 | 16 | 17 | 19 | 20 | 23 | 24 | 27 | 30 | 34 | 42 | 48 | 55 | 67 |
80 | 102 | 115 | 132 | 165 | | | 7.33 | 24
16 | 16
16 | 16
17 | 16
18 | 16
21 | 16
24 | 16
28 | 17
30 | 18
33 | 19
36 | 24
40 | 24
46 | 27
53 | 28
58 | 36
77 | 43
98 | 48
100 | 57
119 | 70
159 | 82
179 | 97
206 | 111
235 | 137 | | 22 | 4N@ | 20 | 16 | 16 | 17 | 18 | 20 | 22 | 25 | 27 | 28 | 33 | 37 | 42 | 48 | 60 | 71 | 84 | 102 | 115 | 143 | 165 | 187 | 244 | | | 5.5 | 24
16 | 16
17 | 16
21 | 16
26 | 17
29 | 19
35 | 20
39 | 20
42 | 21
49 | 26
50 | 27
58 | 31
73 | 34
82 | 40
99 | 47
107 | 61
139 | 69
160 | 76
180 | 104 | 113 | 145 | 148 | 206 | | | 6N@ | 20 | 17 | 19 | 21 | 26 | 28 | 31 | 34 | 38 | 42 | 51 | 73
59 | 60 | 68 | 85 | 103 | 122 | | | 222 | 252 | 322 | | | | 3.67 | 24 | 16 | 17 | 19 | 21 | 25 | 27 | 30 | 32 | 34 | 40 | 47 | 54 | 61 | 75 | 87 | 106 | 113 | 148 | 178 | 202 | 240 | 330 | | | 11N@ | 16
20 | 32
26 | 39
31 | 49
37 | 57
43 | 64
52 | 77
59 | 82
64 | 99
76 | 100
80 | 113
94 | 140
103 | 150
116 | 162
133 | | 256
203 | 235 | 289 | | | | | | | | 2.00 | 24 | 24 | 28 | 32 | 38 | 43 | 50 | 54 | 62 | 65 | 78 | 90 | 108 | 110 | 138 | 182 | 205 | 238 | 301 | | | | | | | 2N@ | 20
24 | 18
18 19
18 | 19
19 | 21
20 | 24
21 | 27
22 | 30
26 | 36
32 | 44
34 | 47
40 | 54
46 | 68
55 | 78
67 | 99
79 | 103
93 | 131
106 | | | 12.00 | 28 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 20 | 21 | 23 | 28 | 32 | 35 | 41 | 48 | 57 | 69 | 72 | 95 | | | 3N@ | 20
24 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 18
16 | 20
17 | 22
19 | 23
21 | 26
24 | 29
27 | 33
29 | 36
31 | 45
38 | 54
47 | 62
55 | 74
64 | 92
78 | 105
94 | 130
108 | 151
117 | 175
156 | | | 8.00 | 28 | 16 | 16 | 16 | 16 | 17 | 17 | 17 | 18 | 18 | 24 | 26 | 26 | 30 | 35 | 40 | 48 | 55 | 67 | 86 | 97 | 108 | 122 | | | 4N@ | 20
24 | 16
17 | 16 | 17 | 19 | 21 | 25
22 | 27
24 | 28
25 | 31 | 36 | 39 | 47
38 | 50 | 63
54 | 78
65 | 100
76 | 101 | 130 | 161 | 183 | 192 | 246 | | | 6.00 | 28 | 16 | 17
16 | 17
16 | 18
16 | 19
17 | 20 | 20 | 21 | 28
25 | 32
27 | 35
30 | 36 | 43
38 | 44 | 65
53 | 62 | 85
74 | 107
88 | 124
108 | 147
126 | 168
149 | 225
187 | | 24 | - FNG | 20 | 16 | 17 | 20 | 22 | 25 | 28 | 31 | 35 | 36 | 43 | 51 | 55 | 62 | 78 | 100 | 105 | 131 | 164 | | 225 | 282 | 005 | | | 5N@
4.8 | 24
28 | 16
16 | 16
16 | 18
17 | 20
19 | 21
20 | 26
22 | 28
25 | 29
27 | 32
29 | 36
32 | 41
36 | 49
42 | 53
46 | 65
58 | 80
66 | 94
82 | 104
97 | 134
115 | 157
138 | 186
168 | 218
180 | 285
231 | | | ••• | 20 | 17 | 20 | 23 | 27 | 30 | 33 | 38 | 41 | 44 | 51 | 59 | 69 | 74 | 101 | 109 | 141 | 163 | 192 | 245 | 294 | | | | | 6N@
4.00 | 24
28 | 16
17 | 17
17 | 20
20 | 23
22 | 26
25 | 29
28 | 32
29 | 34
31 | 38
33 | 43
39 | 53
44 | 60
49 | 61
55 | 76
76 | 103
84 | 106
106 | | 172
129 | 196
177 | 232
202 | 267
240 | 289 | | | | 20 | 29 | 38 | 45 | 51 | 59 | 70 | 75 | 84 | 101 | 103 | 122 | 143 | 166 | 196 | 265 | 320 | | | | | | | | | 12N@
2.00 | 24
28 | 27
25 | 31
29 | 38
33 | 45
40 | 53
45 | 61
54 | 62
56 | 72
69 | 77
71 | 87
79 | | 113
113 | 126
114 | 175
144 | 199
183 | 249
215 | 288
234 | 305 | | | | | | | | 20 | 22 | 22 | 22 | 22 | 22 | 22 | 23 | 24 | 24 | 26 | 27 | 29 | 32 | 37 | 45 | 53 | 60 | 68 | 90 | 99 | 112 | 140 | | | 2N@
13.00 | | 23
23 24
23 | 25
24 | 25
25 | 27
26 | 29
27 | 32
31 | 38
34 | 44
39 | 51
45 | 61
52 | 70
62 | 83
71 | 101
81 | 115
103 | | | 10.00 | 20 | 15 | 15 | 16 | 16 | 17 | 19 | 22 | 23 | 25 | 28 | 33 | 36 | 39 | 50 | 57 | 68 | 78 | 99 | 113 | 140 | 151 | 196 | | | 3N@
8.67 | 24 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 17
17 | 19
17 | 21
19 | 23
20 | 25 | 28 | 31 | 34
29 | 40
38 | 51
45 | 58 | 67 | 80 | 102 | 113 | 132 | | | | 0.07 | 28 | 16 | 16
16 | 16
18 | 21 | 24 | 27 | 17
28 | 30 | 33 | 25
39 | 25
42 | 28
50 | 54 | 69 | 82 | 100 | 56
107 | 69
140 | 81
161 | 97
186 | 110
213 | 136
284 | | | 4N@ | 24 | 16 | 16 | 17 | 18 | 20 | 23 | 25 | 27 | 28 | 33 | 37 | 40 | 48 | 60 | 71 | 79 | 101 | 110 | 143 | 166 | 188 | 223 | | 26 | 6.5 | 28 | 16
17 | 16
18 | 16
21 | 17
25 | 19
28 | 20
31 | 20
35 | 22
39 | 26
40 | 29
48 | 32
54 | 35
62 | 39
69 | 50
91 | 60
100 | 69
114 | 76
140 | 104
172 | 112
200 | 145
239 | 149
275 | 204 | | | 5N@ | 24 | 16 | 16 | 19 | 21 | 24 | 27 | 28 | 31 | 34 | 38 | 43 | 51 | 55 | 71 | 84 | 103 | 108 | 143 | 166 | 201 | 225 | 310 | | | 5.2 | 28
20 | 16
20 | 16
24 | 17
28 | 19
33 | 21
36 | 23
42 | 27
47 | 28
54 | 29
58 | 34
65 | 39
78 | 43
91 | 50
100 | 61
119 | 80
140 | 86
162 | 104
192 | 118
238 | 147
308 | 178 | 200 | 249 | | | 7N@ | 24 | 17 | 20 | 26 | 28 | 31 | 35 | 40 | 44 | 49 | 56 | 64 | 71 | 80 | 103 | 116 | 143 | 166 | 198 | 242 | | | | | | 3.71 | 28 | 17
42 | 20
50 | 22
58 | 27
70 | 29
86 | 32
91 | 35
103 | 38
109 | 42
110 | 50 | 58
152 | 62
173 | 70
202 | 86
252 | 106 | 114 | | | 212 | | 292 | | | | 13N@ | | 42
35 | 43 | 58
50 | 62 | 66 | 91
76 | 88 | 93 | 97 | 131
112 | | 173
154 | 202
166 | | 248 | | | | | | | | | | 2.00 | 28 | 32 | 40 | 48 | 55 | 64 | 68 | 74 | 90 | | 100 | | | | 177 | | 283 | | | <u> </u> | | | | | Bearin | g Depth | | | | | | | 7 | 7 1/2 i | n. | | | | | | | | | | 10 | in. | | | | # DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY Based on a 50ksi maximum yield strength | Girder | Joist | Girder | | | | | | | Jo | oist G | irde | Wei | ght – | Pour | nds F | er Li | near | Foot | | | | | | | |--------------|--------------|---------------|----------|--------------|----------|----------|----------|----------|-----------|----------------|--------------|------------|------------|------------|------------|---------------|------------|------------|------------|------------|--------------------|------------|------------|------------| | Span
(ft) | Spaces (ft) | Depth
(in) | | | | | | | | | L | oad o | n Ea | ch Pa | anel I | Point | | | | | | | | | | , , | ` ' | LRFD | 6K | 7.5K | 9K | 10.5K | | 13.5K | 15K | 16.5K | | 21K | 24K | 27K | | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD
24 | 4K
29 | 5K 29 | 6K
29 | 7K
29 | 8K
29 | 9K
29 | 10K
29 | 11K
30 | 12K
31 | 14K
31 | 16K
33 | 18K
34 | 20K
37 | 25K 39 | 30K
42 | 35K
49 | 40K | 50K | 60K | 70K | 80K | 100K | | | 2N@ | 28 | 29 | 29 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 31 | 32 | 34 | 34 | 38 | 40 | 43 | 57
46 | 65
58 | 77
66 | 91
78 | 103
93 | 129
106 | | | 14.00 | 32
24 | 30
16 | 30
16 | 30
16 | 30
16 | 30
16 | 30
18 | 30
21 | 30
22 | 30
23 | 31
26 | 32
29 | 33 | 34
36 | 37
44 | 39
54 | 40
61 | 44
70 | 52
91 | 60
105 | 68
124 | 76
133 | 95
174 | | | 3N@ | 28 | 16 | 16 | 16 | 16 | 16 | 16 | 18 | 19 | 21 | 23 | 26 | 29 | 31 | 39 | 47 | 52 | 61 | 77 | 94 | 107 | 115 | 156 | | | 9.33 | 32
24 | 16
16 | 16
16 | 16
17 | 16
19 | 17
21 | 17
24 | 17
27 | 18
28 | 19
31 | 24
35 | 24
39 | 27
45 | 29
50 | 36
62 | 42
74 | 47
91 | 54
101 | 70
121 | 80
143 | 97
165 | 110
190 | 131
244 | | | 4N@ | 28 | 17 | 17 | 17 | 18 | 20 | 23 | 24 | 25 | 28 | 32 | 36 | 39 | 44 | 57 | 64 | 76 | 85 | 109 | 124 | 151 | 170 | 206 | | | 7.00 | 32
24 | 16
16 | 16
17 | 16
19 | 18
22 | 19
24 | 20
28 | 21
31 | 22
33 | 24
35 | 27
41 | 31
47 | 37
55 | 39
62 | 46
78 | 54
92 | 62
105 | 74
114 | | 108
176 | 126
215 | 149
244 | 185 | | 28 | 5N@
5.6 | 28
32 | 16
16 | 16
16 | 17
17 | 20
19 | 21
20 | 26
22 | 28
26 | 29
27 | 32
29 | 35
32 | 40
38 | 47
42 | 52
46 | 64
58 | 80
66 | 94
82 | 104
97 | | 156 | 186 | 213 | 260 | | | 5.0 | 24 | 17 | 19 | 21 | 25 | 29 | 32 | 36 | 39 | 43 | 50 | 59 | 66 | 73 | 100 | 109 | 121 | | 191 | 136
219 | 162
254 | 190
314 | 232 | | | 6N@
4.67 | 28
32 | 16
17 | 19
17 | 21
20 | 22
22 | 26
24 | 29
27 | 32
30 | 34
31 | 37
34 | 44
38 | 52
45 | 57
51 | 60
54 | 76
71 | 103
87 | 105
105 | 123
108 | 149
148 | 194
177 | 223
201 | 253
230 | 301 | | | | 24 | 18 | 22 | 26 | 31 | 33 | 37 | 43 | 48 | 51 | 59 | 67 | 79 | 84 | 103 | 131 | 144 | 166 | 219 | 261 | | | 501 | | | 7N@
4.00 | 28
32 | 17
17 | 20
20 | 24
23 | 26
25 | 29
27 | 32
30 | 36
33 | 41
37 | 45
40 | 53
47 | 61
55 | 65
60 | 74
67 | 95
83 | 109
106 | 125
115 | 147
127 | 184
169 | | 272
240 | 312
277 | | | | | 24 | 33 | 43 | 51 | 59 | 66 | 79 | 84 | 102 | 103 | 121 | 143 | 155 | 173 | 221 | 281 | | 332 | | | | - | | | | 14N@
2.00 | 28
32 | 30
28 | 38
33 | 45
40 | 53
47 | 61
54 | 70
63 | 75
72 | 82
76 | 88
79 | 106
100 | 114
113 | 137
118 | 149
132 | 172 | 235
206 | 274
244 | 284 | | | | | | | | 2N@ | 24
28 | 29
29 | 29
29 | 29
29 | 29
29 | 29
29 | 29
30 | 30
30 | 30
30 | 31
30 | 32
32 | 33
32 | 35
34 | 37
36 | 40
38 | 46
41 | 53
44 | 60
49 | 72
65 | 85
74 | 102
86 | 103
92 | 139
115 | | | 15.00 | 32 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 31 | 32 | 33 | 34 | 37 | 40 | 41 | 45 | 55 | 66 | 75 | 89 | 106 | | | | 36
24 | 30
15 | 30
16 |
30
16 | 30
16 | 30
18 | 30
19 | 30
22 | 30
24 | 30
25 | 31
29 | 32
31 | 32
34 | 33
38 | 36
48 | 38
57 | 41
65 | 42
74 | 51
91 | 60
109 | 68
130 | 76
151 | 95
176 | | | 3N@
10.00 | 28
32 | 16
16 | 16
16 | 16
16 | 16
16 | 16
16 | 17
17 | 20
18 | 21
19 | 24
21 | 25
25 | 28
26 | 31
29 | 33
30 | 43
38 | 50
45 | 58
51 | 67
60 | 79
69 | 94
89 | 108
96 | 126
110 | 156
136 | | | 10.00 | 36 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 18 | 20 | 24 | 26 | 27 | 30 | 34 | 42 | 46 | 55 | 70 | 80 | 92 | 99 | 122 | | | 4N@ | 24
28 | 16
16 | 16
16 | 17
17 | 20
18 | 24
21 | 26
23 | 27
25 | 30
27 | 32
28 | 37
33 | 42
37 | 47
42 | 54
46 | 66
56 | 78
71 | 99
79 | 104
93 | 140
110 | 161
143 | 183
156 | 210
179 | 265
223 | | | 7.5 | 32
36 | 16
16 | 16
16 | 16
17 | 18
17 | 19
18 | 20
19 | 21
21 | 23
22 | 27
24 | 29
27 | 32
30 | 36
35 | 41
38 | 50
45 | 60
54 | 69
62 | 76
71 | 104
87 | 112
106 | 146
115 | 149
147 | 202
184 | | | | 24 | 16 | 17 | 20 | 23 | 26 | 29 | 32 | 34 | 38 | 45 | 53 | 58 | 62 | 78 | 100 | 108 | 131 | 162 | 193 | 231 | 262 | | | 30 | 5N@
6.00 | 28
32 | 16
16 | 16
16 | 19
17 | 21
19 | 24
21 | 27
25 | 28
26 | 31
28 | 34
31 | 38
36 | 46
39 | 49
44 | 56
50 | 71
64 | 79
73 | 102
85 | 107
104 | 143
118 | 166
147 | 195
177 | 224
198 | 285
248 | | | | 36 | 16 | 17 | 17 | 19 | 21 | 22 | 25
39 | 27 | 29 | 31 | 38 | 40 | 44 | 58 | 66 | 76 | 88
161 | 108
190 | 127
237 | 151
288 | 179 | 220 | | | 6N@ | 24
28 | 17
16 | 19
19 | 24
20 | 28
26 | 31
28 | 34
31 | 34 | 42
37 | 47
40 | 54
46 | 62
52 | 69
60 | 78
67 | 100
84 | 109
102 | 140
111 | 143 | 167 | 195 | 222 | 289 | | | | 5.00 | 32
36 | 16
17 | 17
18 | 20
19 | 22
21 | 26
24 | 28
28 | 31
28 | 32
30 | 35
33 | 41
38 | 47
44 | 53
49 | 60
55 | 74
67 | 87
79 | 106
90 | | 148
129 | | 200
180 | 237
206 | 304
275 | | | a 110 | 24 | 21 | 25 | 31 | 36 | 41 | 47 | 50 | 58 | 62 | 73 | 83 | 100 | 102 | 131 | 162 | 188 | 216 | 255 | | | | | | | 8N@
3.75 | 28
32 | 20
19 | 23
22 | 29
26 | 32
30 | 37
32 | 40
36 | 44
41 | 49
45 | 53
50 | 61
57 | 72
65 | 81
75 | 86
82 | 111
105 | 144
114 | 147
147 | 175
159 | 224
204 | 281
242 | 308 | 343 | | | | | 36
24 | 19
40 | 21
50 | 24
58 | 28
66 | 30
78 | 35
92 | 38
101 | 39
106 | 43
115 | 53
142 | 59
165 | 69
181 | 74
196 | 89
257 | 111
326 | 118 | 152 | 185 | 218 | 256 | 314 | | | | 15N@ | 28 | 34 | 41 | 52 | 60 | 68 | 76 | 85 | 103 | 105 | 113 | 137 | 152 | 176 | 216 | 265 | 329 | | | | | | | | | 2.00 | 32
36 | 30
29 | 39
35 | 47
42 | 54
49 | 62
56 | 73
66 | 77
72 | 83
79 | 91
82 | | 117
117 | 133
127 | 159
142 | 195
183 | 242
222 | 275
260 | 325
290 | | | | | | | | 3N@ | 24
28 | 15
16 | 15 | 15 | 17 | 19 | 21
19 | 23 | 25 | 26 | 31 | 34
29 | 37 | 42 | 50
44 | 63
51 | 72 | 86 | | 123 | | 150 | 197 | | | 10.67 | 32 | 16 | 16
16 | 16
16 | 16
16 | 17
16 | 17 | 21
19 | 22
21 | 24
22 | 27
25 | 27 | 32
30 | 35
32 | 39 | 45 | 64
52 | 67
60 | 77 | 93 | 107 | 132
115 | 173
156 | | | | 36
24 | 16
16 | 16
16 | 17
18 | 17
22 | 17
24 | 17
26 | 18
29 | 19
31 | 21
34 | 25
40 | 25
45 | 28
53 | 30
58 | 37
69 | 44
89 | 51
99 | 54
107 | 69
139 | 79
161 | 97
187 | 110
222 | 131
273 | | | 4N@ | 28 | 16 | 16 | 17 | 19 | 22 | 24 | 26 | 27 | 30 | 35 | 38 | 46 | 48 | 62 | 70 | 83 | 101 | 115 | 143 | 165 | 187 | 243 | | | 8.00 | 32
36 | 17
16 | 17
16 | 17
18 | 18
18 | 20
19 | 24
20 | 25
22 | 25
23 | 28
26 | 32
28 | 36
34 | 39
37 | 46
39 | 56
50 | 65
57 | 73
66 | 85
75 | 88 | 124
107 | 151
125 | 172
149 | 203
184 | | | 5N@ | 24
28 | 16
16 | 19
17 | 22
19 | 26
22 | 29
24 | 31
27 | 34
29 | 38
32 | 41
35 | 47
41 | 54
47 | 61
54 | 68
62 | 91
71 | 103
92 | 113
102 | 140
114 | 172
143 | 200 | 237
209 | 275
233 | 305 | | 32 | 6.4 | 32 | 16 | 16 | 18 | 20 | 22 | 26 | 27 | 30 | 33 | 36 | 42 | 47 | 55 | 64 | 80 | 94 | 103 | 133 | 156 | 187 | 203 | 258 | | | | 36
24 | 16
18 | 17
21 | 17
25 | 19
29 | 20
33 | 23
36 | 25
40 | 28
46 | 29
49 | 35
57 | 37
65 | 43
73 | 48
82 | 58
100 | 72
119 | 82
141 | 161 | 214 | 137
242 | 307 | 189 | 230 | | | 6N@
5.33 | 28
32 | 17
16 | 19
19 | 21
20 | 26
24 | 28
26 | 31
28 | 36
32 | 39
34 | 43
37 | 50
44 | 59
52 | 62 | 70
60 | 92 | 102 | 121
105 | 142 | 171 | 219
194 | 249 | 290
253 | 321 | | | 5.55 | 36 | 17 | 17 | 20 | 21 | 25 | 27 | 30 | 32 | 35 | 39 | 46 | 57
51 | 57 | 74 | 87 | 105 | 108 | 148 | 176 | | 253
229 | 321
299 | | | 8N@ | 24
28 | 23
21 | 28
26 | 33
28 | 39
33 | 42
37 | 50
42 | 57
48 | 58
51 | 65
59 | 77
67 | 91
75 | 100
85 | 108
101 | 140
111 | 162
143 | 188
167 | 216
192 | 282
241 | 292 | | | | | | 4.00 | 32 | 20 | 23 | 27 | 30 | 34 | 38 | 42 | 46 | 52 | 61 | 69 | 76 | 86 | 109 | 125 | 149 | 176 | 207 | 258 | 304 | 210 | | | Bea | ring De | 36
oth | 19 | 22 | 26 | 29 | 32 | 36 | 39 | 43
7 | 46
1/2 in | 54 | 62 | 74 | 76 | 97 | 116 | 129 | 152 | 195 | 241
10 i | | 316 | | | | 9 50 | ### **DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS U. S. CUSTOMARY** Based on a 50ksi maximum yield strength | Girder | Joist | Girder | | | | | | | Jo | oist G | | | | | | | near | Foot | | | | | | | |--------------|----------------|-------------|----------|------------|----------|-------------|-----------|-------------|------------|--------------|------------|------------|------------|------------|------------|--------------|------------|--------------|------------|------------|------------|-------------|-------------|--------------| | Span
(ft) | Spaces
(ft) | (in) | | | | | | | | | | oad o | | ch Pa | | | | | | | | | | | | | | LRFD
ASD | 6K
4K | 7.5K
5K | 9K
6K | 10.5K
7K | 12K
8K | 13.5K
9K | 15K
10K | 16.5K
11K | 18K
12K | 21K
14K | 24K
16K | 27K
18K | 30K
20K | 37.5K
25K | 45K
30K | 52.5K
35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | 3N@ | 32 | 18 | 18 | 18 | 19 | 19 | 19 | 20 | 22 | 23 | 26 | 28 | 32 | 35 | 42 | 49 | 58 | 66 | 87
73 | 91
89 | 112
99 | 126
115 | 156
136 | | | 11.33 | 36
40 | 18
19 | 19
19 | 19
19 | 19
19 | 19
19 | 19
19 | 20
20 | 20
20 | 22
21 | 26
25 | 27
27 | 29
28 | 31
32 | 39
37 | 45
44 | 51
46 | 60
54 | 70 | 79 | 92 | 110 | 132 | | | 4N@ | 28
32 | 16
16 | 16
16 | 18
17 | 20
19 | 23
20 | 26
24 | 27
24 | 29
27 | 32
30 | 36
32 | 40
37 | 47
42 | 54
47 | 62
56 | 78
71 | 91
79 | 100
92 | 130
108 | 152
134 | 174
155 | 199
177 | 243
223 | | | 8.50 | 36
40 | 16
16 | 17
18 | 18
18 | 18
18 | 19
19 | 21
20 | 23
21 | 26
23 | 27
26 | 29
28 | 33
33 | 38
35 | 41
39 | 50
45 | 61
54 | 69
62 | 76
74 | 104
87 | 113
106 | 146
115 | 149
148 | 200
182 | | 34 | - | 28 | 16 | 17 | 21 | 23 | 26 | 29 | 32 | 35 | 38 | 45 | 47 | 54 | 62 | 77 | 99 | 106 | 120 | 153 | 185 | 212 | 248 | | | | 5N@
6.80 | 32
36 | 16
16 | 17
16 | 18
17 | 21
20 | 24
21 | 27
25 | 30
28 | 32
28 | 34
33 | 39
36 | 46
39 | 48
47 | 55
50 | 70
64 | 79
73 | 101
85 | 107
104 | 133
119 | 156
146 | 197 | 214
198 | 267
241 | | | | 40
28 | 17
17 | 17
20 | 18
24 | 19
28 | 21
30 | 23
33 | 26
36 | 29
41 | 29
44 | 35
54 | 38
58 | 40
65 | 48
73 | 58
100 | 66
108 | 80
130 | 96
142 | 111
190 | | 151
248 | 181
307 | 227 | | | 6N@
5.67 | 32
36 | 17
17 | 19
18 | 21
20 | 25
22 | 28
26 | 31
28 | 34
31 | 37
32 | 40
36 | 48
41 | 52
50 | 59
53 | 67
60 | 83
74 | 102 | 110
105 | 123
113 | 167 | 193
177 | | 252
228 | 298 | | | 5.07 | 40 | 17 | 18 | 19 | 22 | 24 | 27 | 29 | 30 | 33 | 39 | 42 | 51 | 54 | 67 | 83 | 97 | 108 | 128 | 153 | | 216 | 269 | | | 7N@ | 28
32 | 19
18 | 23
20 | 27
26 | 31
27 | 34
31 | 39
35 | 43
38 | 47
42 | 54
47 | 62
56 | 70
64 | 78
71 | 91
79 | | 131
111 | 152
134 | 175
155 | | 255
223 | 268 | | | | | 4.86 | 36
40 | 17
17 | 20
20 | 22
23 | 27
25 | 29
28 | 32
30 | 36
33 | 38
36 | 42
39 | 50
45 | 57
53 | 65
59 | 69
63 | 86
79 | 105
99 | 118
109 | 136
122 | 176
154 | 203
196 | | 285
258 | 332 | | | 9N@ | 28
32 | 25
21 | 28
26 | 34
30 | 39
35 | 43
40 | 51
44 | 58
49 | 63
56 | 67
60 | 78
70 | 92
80 | 101
95 | 109
103 | 142 | 164
148 | 194
175 | 220
198 | 284 | 325 | | | | | | 3.78 | 36 | 20 | 25 | 28 | 32 | 36 | 41 | 45 | 50 | 53 | 62 | 72 | 81 | 88 | 113 | 127 | 150 | 178 | 227 | 275 | | | | | | | 40
28 | 19
18 | 23
18 | 28
18 | 30
18 | 34
19 | 38
21 | 43
23 | 46
25 | 51
27 | 59
30 | 68
33 | 76
40 | 84
41 | 48 | 116
60 | 142
69 | 159
81 | 206
94 | 250
109 | | | 186 | | | 3N@
12.00 | 32
36 | 18
18 | 18
18 | 18
19 | 18
19 | 18
19 | 19
19 | 21
20 |
23
21 | 25
22 | 27
26 | 30
28 | 33
31 | 36
34 | 44
43 | 54
48 | 61
55 | 71
63 | 87
76 | 104
93 | 112
107 | | 164
156 | | | | 40 | 19
16 | 19 | 19
19 | 19 | 19 | 19 | 19
29 | 20 | 22
34 | 26
39 | 26
45 | 29
50 | 32 | 40
69 | 44
81 | 51
99 | 57
104 | 69
140 | 89
161 | 97
183 | | 131
265 | | | 4N@ | 32 | 16 | 16 | 17 | 20 | 23 | 24 | 26 | 28 | 31 | 35 | 40 | 46 | 48 | 62 | 70 | 83 | 101 | 115 | 143 | 165 | 188 | 230 | | | 9.00 | 36
40 | 17
16 | 17
18 | 17
18 | 18
18 | 21
19 | 24
21 | 25
23 | 27
23 | 28
26 | 33
28 | 37
32 | 40
38 | 46
40 | 57
50 | 65
58 | 73
66 | 85
76 | 109
96 | 125
111 | 150
126 | 172
149 | 212
183 | | | 5N@
7.20 | 28
32 | 16
16 | 18
17 | 21
20 | 25
22 | 26
24 | 31
27 | 34
30 | 36
34 | 40
35 | 45
41 | 54
46 | 61
54 | 68
59 | 81
70 | 100
91 | 114
101 | 130
112 | 162
143 | 196
177 | 231
199 | 262
233 | 300 | | | | 36
40 | 16
17 | 16
17 | 18
17 | 21
20 | 23
21 | 26
24 | 28
26 | 30
28 | 33
31 | 37
36 | 42
39 | 47
43 | 55
49 | 63
57 | 79
73 | 93 | 104 | 133 | 156 | 186 | 200 | 258 | | 36 | 2010 | 28 | 18 | 20 | 25 | 27 | 33 | 36 | 39 | 42 | 47 | 57 | 62 | 69 | 77 | 99 | 113 | 140 | 160 | | | 162
282 | | 230 | | | 6N@
6.00 | 32
36 | 17
16 | 20
18 | 23
21 | 25
24 | 28
26 | 31
29 | 35
32 | 39
36 | 42
37 | 48
44 | 55
52 | 62
56 | 70
63 | | 102
102 | 121
106 | 142
123 | 167
147 | 199
193 | 241
214 | 285
252 | 317 | | | | 40
28 | 17
19 | 18
24 | 20
28 | 22
33 | 26
37 | 27
40 | 30
47 | 33
50 | 35
54 | 41
62 | 46
77 | 53
82 | 58
99 | 71
113 | 86
140 | 105
162 | 111
188 | _ | 177
291 | 200 | 228 | 296 | | | 7N@
5.14 | 32
36 | 18
18 | 21
20 | 26
25 | 28
28 | 32
31 | 37
33 | 40
36 | 43
41 | 49
44 | 56
53 | 64
57 | 71
65 | 80
73 | 102 | 116
109 | 143
125 | 166
147 | 196 | 246
213 | | 206 | | | | 3.14 | 40 | 17 | 20 | 24 | 26 | 29 | 31 | 34 | 37 | 41 | 49 | 55 | 62 | 66 | 82 | 106 | 113 | 127 | 183
167 | 200 | | 306
274 | | | | 9N@ | 28
32 | 24
23 | 31
27 | 36
31 | 41
37 | 46
40 | 54
48 | 57
52 | 65
59 | 69
63 | 82
73 | 99
84 | 104
102 | 113
103 | | 173
157 | 205
185 | 236
215 | 293
268 | | | | | | | 4.00 | 36
40 | 21
20 | 26
24 | 29
27 | 33
30 | 37
35 | 41
39 | 50
43 | 52
46 | 56
51 | 65
62 | 74
68 | 85
76 | 95
87 | | 146
121 | 160
151 | 187
178 | | 298
270 | 307 | | | | | 3N@ | 32
36 | 22
23 | 23
23 | 23
23 | 23
23 | 23
23 | 24
24 | 25
25 | 26
26 | 26
26 | 29
27 | 33
28 | 36
32 | 40
36 | 47
43 | 57
50 | 65
61 | 74
67 | 91 | 109 | | | 173 | | | 12.67 | 40 | 23 | 23 | 23 | 23 | 24 | 24 | 24 | 25 | 26 | 29 | 28 | 31 | 33 | 43 | 48 | 55 | 63 | 85
73 | 89 | 99 | 115 | 145 | | | | 32 | 23
16 | 24
16 | 24
18 | 24
21 | 24 | 24
26 | 24
28 | 25
30 | 26
32 | 28
36 | 29
41 | 29
46 | 33
54 | 39
62 | 44
78 | 50
91 | 58
100 | 70
120 | 88
152 | 96
175 | | 244 | | | 4N@
9.50 | 36
40 | 16
17 | 17
17 | 17
18 | 19
18 | 23
20 | 24
23 | 26
24 | 26
26 | 29
28 | 34
31 | 38
35 | 42
38 | 47
41 | 56
51 | 71
61 | 79
72 | | 108
104 | 134
113 | 155
146 | 177
149 | | | | | 44
32 | 18
16 | 18 | 18 | 18 | 19
26 | 21 | 23 | 24
35 | 27
37 | 29
44 | 34
47 | 36
55 | 39
62 | 48
77 | 58
91 | 66
105 | 74 | | 106 | 121 | 148
233 | 182 | | | 5N@ | 36 | 16 | 17 | 18 | 22 | 24 | 27 | 29 | 31 | 34 | 38 | 46 | 49 | 56 | 71 | 79 | 93 | 107 | 134 | 158 | 184 | 213 | | | | 7.60 | 40
44 | 16
17 | 16
17 | 17
18 | 20
20 | 22
21 | 25
23 | 28
26 | 30
28 | 33
30 | 37
35 | 41
39 | 47
42 | 50
49 | 63
57 | 74
69 | 93
81 | 96 | 111 | | 161 | 197
188 | | | 38 | 6N@ | 32
36 | 17
17 | 20
19 | 23
21 | 27
26 | 31
28 | 34
32 | 36
34 | 39
37 | 43
40 | 51
48 | 58
52 | 65
59 | 73
64 | 83 | 106
102 | 121
110 | 142
123 | 189
167 | 218
192 | 251
222 | 305
260 | | | | 6.33 | 40
44 | 17
17 | 18
18 | 20
20 | 23
22 | 26
26 | 29
28 | 32
30 | 33
33 | 36
34 | 42
39 | 50
46 | 56
51 | 61
58 | 73
70 | 86
82 | 105
97 | 113 | 148 | 176
163 | 199 | 228 | 298
272 | | | ONI® | 32 | 20 | 26 | 30 | 35 | 39 | 43 | 49 | 55 | 59 | 67 | 79 | 92 | 101 | 121 | 143 | 167 | 191 | 239 | 309 | | | | | | 8N@
4.75 | 36
40 | 20
20 | 24
25 | 28
28 | 32
31 | 36
34 | 41
37 | 44
43 | 50
48 | 53
51 | 61
58 | 69
66 | 81
74 | 86
82 | 106
106 | 115 | 147
139 | 168 | 202 | 240 | 292 | 333 | | | | | 44
32 | 19
27 | 23
32 | 27
38 | 29
45 | 32
48 | 36
55 | 39
62 | 43
70 | 49
78 | 54
91 | 60
102 | 72
107 | 76
121 | 98
155 | 111
191 | 123
212 | 153
260 | 184 | 222 | 272 | 309 | | | | 10N@
3.80 | 36
40 | 25
23 | 30
28 | 35
33 | 39
37 | 47
42 | 49
48 | 56
50 | 64
57 | 71
64 | 79
76 | 93 | 103
95 | 108 | 145
120 | 173 | 196
176 | 214 | 282
264 | 314 | | | | | | 3.00 | 44 | 22 | 26 | 31 | 35 | 38 | 44 | 49 | 53 | 58 | 67 | 76 | 83 | 97 | 113 | 139 | | 192 | 239
239 | 288 | | | | | Bearin | g Depth | | | | | | | | 7 | 1/2 ir | ١. | | | | | | | | | 10 | 0 in. | | | | ### DESIGN GUIDE WEIGHT TABLE FOR JOIST GIRDERS Based on a 50ksi maximum yield strength ### **U. S. CUSTOMARY** | Girder
Span | Joist
Spaces | | | | | | | | Jo | oist G | | ` | | | nds F
anel I | | | Foot | | | | | | | |----------------|-----------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|---|----------------------------|----------------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------| | (ft) | (ft) | (in)
LRFD | | 7.5K | | 10.5K | | | | | | 21K | 24K | 27K | | 37.5K | | 52.5K | 60K | 75K | 90K | | 120K | | | | | ASD
32 | 4K
22 | 5K
23 | 6K
23 | 7K
23 | 8K
24 | 9K
24 | 10K
25 | 11K
26 | 12K
27 | 14K
30 | 16K
34 | 18K
38 | 20K
40 | 25K
51 | 30K
60 | 35K 69 | 40K
81 | 50K
94 | 60K
108 | 70K | 80K
150 | 100K
185 | | | 3N@
13.33 | 36
40
44 | 23
23
23
23
23 | 23
23
23
24 | 23
23
23
24 | 23
23
24
24 | 23
23
24
24 | 24
23
24
24 | 25
24
24
24 | 25
25
26
26 | 27
27
26
26 | 27
27
28
29 | 32
28
28
29 | 34
32
32
29 | 39
35
33
32 | 46
43
42
38 | 54
49
47
44 | 61
55
55
51 | 70
62
63
57 | 87
84
73
70 | 104
93
89
80 | 111
107
99
92 | 126
125
115
102 | 164
156
131
131 | | | 4N@
10.00 | 32
36
40
44
48 | 16
16
17
16
17 | 16
17
17
16
17 | 19
18
17
18
18 | 22
21
19
18
18 | 25
25
23
20
19 | 26
25
25
21
20 | 28
26
26
23
23 | 30
29
27
24
25 | 33
31
29
28
26 | 39
34
32
30
28 | 45
40
38
34
32 | 50
44
41
37
34 | 53
48
46
40
37 | 68
62
56
51
49 | 77
71
68
57
58 | 90
79
77
66
66 | 104
93
93
76
74 | 115
109
104
87 | 108 | 166
150
126
116 | 202
179
172
150
139 | 252
230
212
189
178 | | | 5N@
8.00 | 44
48 | 16
16
16
17
17 | 18
17
16
17
17 | 22
20
18
17
17 | 25
23
21
20
19 | 28
25
23
23
23
32 | 31
27
27
24
25
35 | 34
31
28
28
25
39 | 37
34
30
29
28 | 40
35
33
31
29 | 46
41
37
35
33
54 | 54
46
42
39
37 | 58
54
47
46
41
69 | 65
59
53
49
47
77 | 78
71
64
60
57 | 100
91
80
73
67 | 106
102
93
81
80 | 130
107
104
96
93 | 128
116
111 | 167
159
138 | 182
161
152 | 255
230
210
186
178 | 298
262
245
217 | | 40 | 6N@
6.67 | 36
40
44
48 | 17
17
17
17
17 | 20
18
18
18
24 | 23
21
21
21
20 | 26
25
22
24
32 | 28
28
27
25 | 31
29
29
28 | 35
32
30
29 | 38
36
33
31 | 41
38
36
33
54 | 48
44
42
40
62 | 55
49
49
44
70 | 62
56
53
52 | 70
64
58
55 | 83
79
74
72 | 102
94
86
79 | 115
105
105
98 | 142
118
111
108 | 167
147
148
130 | 197
185
177
156 | 232
215
199 | 275
245
227
204 | 313
294
271 | | | 7N@
5.71 | 36
40
44
48 | 18
18
18
18
18 | 21
20
21
22
27 | 26
25
23
24 | 28
28
27
27
27 | 32
31
29
30 | 35
33
31
33 | 40
36
34
37 | 47
43
41
37
39 | 48
45
41
42
62 | 56
51
50
48
70
| 63
57
58
57 | 71
65
63
63 | 79
72
67
71 | 102
94 | 115
108
106
99
152 | 143
118
113
114 | 175
155
145
127
125 | 197
184
167 | 232
214 | 255
237 | 300
272
267 | | | | 8N@
5.00 | 36
40
44
48 | 21
20
20
19 | 25
23
24
24 | 29
27
29
26 | 32
30
30
29 | 37
35
34
32 | 40
38
38
35 | 48
41
41
40 | 51
46
45
43 | 56
51
50
46 | 64
61
58
55 | 72
69
66
60 | 84
76
75
72 | 93
86
78
76 | 111
105
98
90 | 144
119
113
111 | 156
148
129
118 | 182
171
153
144 | 222
203
193 | 277
257
240
218 | 278 | 320
295 | | | | 10N@
4.00 | 36
40
44
48 | 27
27
25
23
22 | 33
30
28
28
26 | 40
35
33
31
29 | 43
41
39
37
34 | 51
48
43
40
38 | 58
55
50
48
42 | 63
62
56
51
50 | 70
64
57
57
54 | 78
72
65
59
59 | 92
79
74
74
67 | 103
94
86
81
76 | 110
107
95
88
83 | 122
116
109
98
98 | 134
120
114 | 190
181
160
150
140 | 218
199
186
175
157 | 246
240
212
190
182 | 306
277
255
230 | 302
277 | | | | | | 3N@
14.00 | 36
40
44
48 | 29
29
30
30
30 | 29
29
30
30
30 | 29
30
30
30
30 | 30
30
30
30
30 | 31
30
30
30
31 | 31
31
30
30
31 | 32
32
31
32
32 | 33
34
34
32
32 | 34
33
34
33
33 | 35
35
34
35
35 | 38
36
35
35
35 | 40
38
37
36
36 | 45
40
39
37
39 | 53
47
46
43
43 | 60
57
53
48
48 | 69
64
61
56
53 | 81
70
71
63
61 | 94
87
85
73
74 | 89
88 | 122
112
99
99 | 160
141
126
115
110 | 185
173
156
146
132 | | | 4N@
10.50 | 36
40
44
48 | 16
16
17
17
18 | 17
16
17
17
18 | 20
18
18
18
18 | 23
21
21
19
18 | 25
23
22
21
20 | 28
25
24
25
25 | 30
28
26
25
27 | 33
30
28
27
25 | 35
33
30
29
28 | 42
37
34
32
31 | 45
44
38
36
35 | 50
46
45
42
39 | 57
52
47
46
43 | 68
66
59
54
50 | 89
75
68
65
63 | 99
91
79
74
71 | 104
101
94
82
81 | 140
115
109
106
98 | 114 | 175
159
138
139 | 214
191
177
164
153 | 274
240
214
202
192 | | | 5N@
8.40 | 36
40
44
48 | 17
16
16
16
17 | 20
17
18
18
18 | 23
21
20
19
18 | 26
23
22
21
20 | 28
26
24
25
24 | 33
28
27
26
24 | 36
32
29
28
27 | 39
34
32
30
29 | 44
37
34
32
30 | 47
44
40
38
36 | 54
48
45
41
39 | 61
54
52
47
43 | 68
62
55
53
49 | 90
74
67
64
57 | 103
91
79
77
70 | 113
105
93
93
81 | 107
104
96 | 133
119
111 | 177
156
148
137 | 186
171
162 | 256
233
210
200
187 | 266
238
220 | | 42 | 6N@
7.00 | 36
40
44
48 | 18
17
17
17
17 | 21
20
19
18
18 | 26
24
21
21
21 | 29
27
26
24
24 | 33
30
28
26
26 | 37
34
32
29
29 | 40
36
34
32
30 | 45
39
36
34
33 | 47
43
40
36
35 | 57
51
47
43
41 | 65
58
55
50
46 | 73
62
59
57
52 | 81
70
64
60
58 | 91
79
76
70 | 119
106
103
95
83 | 140
121
109
105
106 | 142
123
113
108 | 177
167
148
139 | 176
163 | 289
240
222
202
188 | 227 | 303
270 | | | 7N@
6.00 | 36
40
44
48 | 20
20
18
18
18 | 24
23
22
21
20 | 29
27
25
24
24 | 34
30
28
27
26 | 37
35
32
30
29 | 42
38
35
32
32 | 47
41
39
36
34 | 53
46
42
40
37 | 54
51
47
43
41 | 68
59
56
51
47 | 77
70
63
57
52 | 90
78
71
65
59 | 99
83
79
73
67 | 102
95
87
83 | 109
106
98 | 162
142
134
119
113 | 147
137
122 | 182
176
164 | 248
222
202 | 292
272
246
220 | | | | | 8N@
5.25 | 36
40
44
48 | 22
20
20
21
21 | 28
26
24
23
25 | 33
29
28
28
28 | 38
34
33
31
29 | 43
40
36
34
32 | 47
43
41
37
35 | 54
49
45
43
39 | 58
55
50
47
44 | 65
59
53
52
48 | 77
67
61
58
56 | 83
79
69
66
64 | 100
84
81
79
69 | 78 | 107
107
100 | 143
126
116
111 | 151
141
130 | 190
175
157 | 201 | 264
239 | | 333
315 | | | | 11N@
3.82 | 36
40 | 31
27
27
25
24 | 37
35
32
31
29 | 45
41
37
35
34 | 53
48
42
40
38 | 61
55
49
48
45 | 69
62
56
51
50 | 77
70
64
58
54 | 82
72
65
65
60
1/2 ir | 91
79
73
66
67 | | 103 | 108
106 | 117 | | 197 | | 270
243
218
205 | 281
259 | 318
0 in. | | | | Based on a 50ksi maximum yield strength # **U. S. CUSTOMARY** | Girder
Span | Joist
Spaces | | | | | | | | Jo | oist C | | | | | nds F
anel I | | near | Foot | | | | | | | |----------------|-----------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|------------|------------|------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | (ft) | (ft) | (in)
LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | 18K | 21K | 24K | 27K | 30K | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | | 36
40 | 30
30 | 30
30 | 30
30 | 30
30 | 31
31 | 31 | 32
32 | 34 | 35
35 | 36
35 | 38
37 | 39 | 44
39 | 52
51 | 60
59 | 69
62 | 81
70 | 95
88 | 120
110 | 122 | 151
141 | 166 | | | 3N@
15.00 | 44
48 | 30
30 | 30
30 | 30
30 | 31
31 | 31
31 | 31
31 | 32
32 | 33
32 | 34 | 34
36 | 36
36 | 37
38 | 38
37 | 46
41 | 53
48 | 59
58 | 67
63 | 85
82 | 98
90 | | 126
117 | | | | | 54
36 | 30
18 | 30
19 | 30
20 | 32
23 | 32
25 | 32
27 | 32
29 | 32
31 | 33
34 | 36
42 | 36
43 | 37
50 | 39
57 | 41
65 | 48
77 | 53
90 | 60
104 | 71
130 | 89
152 | 97
174 | 104
199 | 132
252 | | | | 40 | 19 | 19 | 20 | 21 | 24 | 25 | 28 | 30 | 32 | 37 | 43 | 46 | 51 | 65 | 75 | 87 | 101 | 115 | 143 | 165 | 178 | 230 | | | 4N@
11.25 | 44
48 | 19
19 | 19
20 | 20
20 | 21
21 | 23
22 | 26
25 | 26
25 | 28
26 | 30
29 | 34
32 | 40
35 | 44
40 | 47
42 | 59
54 | 68
64 | 76
73 | 93
81 | 109
104 | 134
114 | | • | 211
198 | | | | 54
36 | 20
16 | 20
18 | 20
23 | 21
25 | 22
28 | 24
30 | 25
33 | 26
36 | 27
39 | 30
46 | 33
54 | 38
58 | 41
65 | 50
78 | 58
99 | 66
110 | 74
131 | 97
152 | 108
194 | 116
228 | 140
254 | 176 | | | EN@ | 40 | 16 | 18 | 21 | 23 | 26 | 28 | 31 | 34 | 37 | 44 | 46 | 54 | 58 | 75 | 91 | 105 | 112 | 143 | 176 | 206 | 231 | 295
265 | | | 5N@
9.00 | 44
48 | 16
17 | 17
18 | 20
19 | 23
24 | 24
25 | 27
26 | 29
28 | 32
30 | 34
32 | 39
37 | 45
41 | 48
46 | 56
53 | 67
64 | 79
78 | 94
89 | 96 | 133
118 | 156
148 | 182
162 | 186 | 265
238 | | | | 54
36 | 17
17 | 18
22 | 18
24 | 21
29 | 24
32 | 26
35 | 26
39 | 29
43 | 31
47 | 33
54 | 40
62 | 43
69 | 47
78 | 58
99 | 70
109 | 79
140 | | 112
189 | 131
217 | 153
261 | 166 | 217 | | 45 | 6N@ | 40
44 | 17
17 | 20
19 | 24
23 | 27
26 | 30
28 | 33
31 | 35
33 | 38
36 | 42
39 | 49
47 | 55
52 | 62
56 | 71
64 | 92
80 | 102
103 | 116
109 | 142
123 | 168
159 | 196
192 | 246
222 | 281
250 | | | | 7.50 | 48 | 17 | 19 | 22 | 24 | 27 | 29 | 31 | 34 | 37 | 43 | 50 | 57 | 61 | 74 | 87 | 105 | 113 | 148 | 175 | 199 | 227 | 295
266 | | | | 36 | 17
20 | 18
24 | 21
28 | 24
32 | 25
36 | 28
40 | 30
46 | 33
47 | 35
54 | 38
62 | 45
70 | 52
77 | 55
91 | 105 | 130 | 98
152 | | 217 | 155
255 | 178 | 202 | 266 | | | 7N@ | 40
44 | 19
18 | 22
22 | 27
25 | 30
28 | 34
31 | 38
36 | 41
39 | 46
42 | 49
47 | 56
56 | 63
63 | 71
65 | 79
72 | 102
94 | 116
109 | 143
123 | 155
147 | 196
182 | 231
213 | 290
257 | 299 | | | | 6.43 | 48
54 | 18
24 | 21
24 | 24
26 | 27
30 | 29
32 | 33
35 | 37
39 | 40
41 | 43
45 | 50
49 | 57
57 | 65
63 | 73
72 | 82
83 | 105
100 | 119
114 | 136
125 | 175
165 | 201
195 | 238
231 | 278
263 | | | | | 36 | 25 | 30 | 35 | 39 | 47 | 54 | 58 | 63 | 70 | 78 | 92 | 101 | 109 | 141 | 164 | 194 | 226 | 282 | 100 | 201 | | | | | 9N@ | 40
44 | 22
23 | 28
28 | 32
31 | 37
36 | 42
39 | 48
45 | 52
50 | 56
53 | 64
57 | 72
66 | 84
76 | 93
86 | 103
130 | 113 | | 179
175 | 197
187 | 244 | 295 | | | | | | 5.00 | 48
54 | 22
21 | 26
24 | 29
28 | 34
31 | 37
35 | 41
39 | 46
43 | 51
46 | 54
51 | 63
60 |
74
69 | 81
76 | 88
84 | 109
108 | 129
116 | 152
144 | 177
159 | 226
193 | 269
243 | 313
280 | 321 | | | | | 36
40 | 32
30 | 39
35 | 48
42 | 55
49 | 62
56 | 70
64 | 78
71 | 83
79 | 100
84 | 106
103 | 121
108 | 142
123 | 155
145 | 191
171 | 225
198 | 272
246 | 294 | | | | | | | | 12N@
3.75 | 44
48 | 28
27 | 33
31 | 40
37 | 48
43 | 53
52 | 57
58 | 65
63 | 74
68 | 81
75 | 95
83 | 105
97 | 111
108 | 125
116 | 163
153 | 196
179 | 216
201 | 264 | 301 | | | | | | | 3.75
 | 54 | 25 | 30 | 36 | 40 | 47 | 52 | 58 | 62 | 73 | 79 | 86 | 101 | 112 | 133 | 158 | 184 | 218 | 274 | 333 | | | | | | | 36
40 | 18
19 | 19
19 | 21
20 | 24
22 | 26
24 | 29
27 | 31
29 | 34
32 | 37
35 | 43
41 | 48
44 | 56
49 | 57
57 | 73
65 | 89
77 | 102
91 | l | 139
130 | 171
152 | | | 273
253 | | | 4N@
12.00 | 44
48 | 19
19 | 19
20 | 20
20 | 21
20 | 25
24 | 27
27 | 29
27 | 30
30 | 32
31 | 36
33 | 43
40 | 45
44 | 50
46 | 63
60 | 75
68 | 87
77 | l | 113
109 | 134
129 | 155
157 | | 231
212 | | | | 54 | 20 | 20 | 21 | 21
27 | 24 | 25 | 26
36 | 26
39 | 29 | 32
50 | 37
57 | 41 | 43 | 49 | 61 | 70
113 | 79 | 97
171 | 112
197 | 128 | 149 | | | | | 40 | 17 | 21
19 | 24 | 25 | 27 | 31 | 33 | 37 | 39 | 44 | 51 | 57 | 65 | 77 | 91 | 106 | 125 | 153 | 177 | 228
206 | 266
234 | | | | 5N@
9.60 | 44
48 | 17
17 | 18
17 | 23
22 | 25
24 | 26
24 | 29
27 | 31
30 | 34
32 | 36
35 | 43
39 | 47
45 | 52
47 | 59
53 | 71
67 | 87
78 | 101
90 | l | 133
128 | 156
157 | 195
184 | 222
207 | 278
266 | | | | 54
36 | 18
18 | 18
23 | 21
26 | 22
30 | 24
34 | 26
37 | 28
40 | 30
45 | 32
50 | 37
61 | 41
68 | 46
76 | 49
81 | 61
99 | 70
119 | 81
140 | | 116
201 | | 163
288 | 185 | 229 | | | 6N@ | 40
44 | 17
17 | 22
20 | 24
24 | 27
27 | 32
30 | 35
33 | 38
36 | 41
39 | 46
42 | 54
48 | 62
55 | 69
63 | 77
71 | 92 | 106
103 | 130
111 | 143 | 176 | 218 | 250
231 | 292 | | | | 8.00 | 48 | 17 | 20 | 24 | 25 | 28 | 31 | 34 | 36 | 39 | 47 | 50 | 57 | 64 | 80 | 94 | 108 | 118 | 148 | 182 | 213 | 251 | | | 48 | | 54
36 | 17
24 | 20
28 | 22
33 | 24
39 | 27
43 | 29
50 | 32
54 | 35
61 | 38
65 | 40
77 | 49
91 | 52
100 | 58
105 | | 163 | 106
188 | 216 | 278 | | 195 | 216 | 2/9 | | | 8N@ | 40
44 | 21
21 | 27
27 | 31
29 | 35
33 | 40
37 | 46
41 | 49
47 | 55
50 | 59
56 | 71
64 | 79
72 | 92
81 | 101
94 | | 143
135 | | | 246
223 | | | | | | | 6.00 | 48
54 | 21
23 | 24
26 | 29
28 | 32
33 | 36
37 | 39
40 | 43
43 | 49
49 | 51
51 | 61
59 | 67
67 | 76
75 | | 107 | | 150 | 175 | 203 | 249 | 301
268 | 21/ | | | | | 36 | 27 | 31 | 37 | 42 | 47 | 54 | 61 | 69 | 70 | 91 | 99 | 105 | 114 | 151 | 174 | 206 | 237 | | 223 | 200 | 014 | | | | 9N@ | 40
44 | 24
25 | 29
28 | 35
33 | 38
36 | 43
42 | 49
48 | 55
52 | 63
57 | 67
64 | 78
73 | 92
80 | 101
94 | 107
104 | 118 | | 175 | | 235 | | | | | | | 5.33 | 48
54 | 23
23 | 28
26 | 31
29 | 35
33 | 40
37 | 43
41 | 49
45 | 53
50 | 57
52 | 66
60 | 74
68 | 82
76 | | 111
108 | | 161
153 | | 235
204 | 284
254 | 301 | | | | | | 36
40 | 34
32 | 41
38 | 50
46 | 58
55 | 68
62 | 76
70 | 82
74 | 91
79 | 100
92 | 109 | 130 | 142 | 164 | 192
180 | 243 | 294
258 | 301 | | | | | | | | 12N@ | 44 | 30 | 35 | 42 | 50 | 56 | 64 | 71 | 73 | 81 | 103 | 108 | 117 | 134 | 173 | 198 | 239 | 276 | | | | | | | | 4.00 | 48
54 | 29
27 | 34
32 | 40
38 | 46
42 | 51
51 | 57
54 | 66
61 | 72
68 | 75
73 | 86
84 | | | 120
114 | | | | 248
227 | | | | | | | Bearin | g Depth | | | | | | | | 7 | 7 1/2 i | n. | | | | | | | | | 10 | 0 in. | | | | Based on a 50ksi maximum yield strength **U. S. CUSTOMARY** | Girder
Span | Joist
Spaces | Girder | | | | | | | Jo | oist G | | | | | nds F | | near | Foot | | | | | | | |----------------|-----------------|-------------|----------|------------|----------|-------------|-----------|-------------|------------|--------------|------------|------------|------------|------------|------------|--------------|------------|--------------|------------|------------|-------------|-------------|-------------|--------------| | (ft) | (ft) | (in) | | | | | | | | | | | | | anel l | | | | | | | | | | | | | LRFD
ASD | 6K
4K | 7.5K
5K | 9K
6K | 10.5K
7K | 12K
8K | 13.5K
9K | 15K
10K | 16.5K
11K | 18K
12K | 21K
14K | 24K
16K | 27K
18K | 30K
20K | 37.5K
25K | 45K
30K | 52.5K
35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | | 40 | 23 | 24 | 24 | 27 | 27 | 28 | 31 | 33 | 36 | 42 | 44 | 50 | 56 | 65 | 85 | 90 | 104 | 130 | 152 | | 199 | 252 | | | 4N@ | 44
48 | 23
23 | 24
24 | 24
24 | 26
26 | 28
28 | 28
28 | 29
29 | 31
30 | 34
32 | 38
36 | 43
42 | 49
44 | 51
50 | 66
60 | 74
68 | 87
79 | 104
93 | 115
108 | 153
133 | 174
156 | 180
178 | 230
213 | | | 12.50 | 54 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 30 | 31 | 33 | 38 | 42 | 45 | 55 | 62 | 73 | 82 | 106 | 112 | 137 | 159 | 197 | | | | 60
40 | 27
17 | 28
21 | 28
24 | 28
25 | 28
29 | 29
32 | 29
35 | 30
38 | 31
42 | 32
46 | 36
54 | 40
58 | 43
65 | 51
86 | 59
100 | 69
110 | 76
125 | 97
152 | 113
184 | 122
219 | 138
253 | 178 | | | | 44 | 16 | 19 | 23 | 24 | 28 | 30 | 33 | 36 | 39 | 44 | 50 | 54 | 58 | 75 | 91 | 105 | 113 | 152 | 177 | | 230 | 294 | | | 5N@ | 48 | 17 | 19 | 22 | 25 | 25 | 29 | 31 | 33 | 36 | 40 | 46 | 53 | 59 | 68 | 88 | 94 | 107 | 134 | | 183 | | 269 | | | 10.00 | 54
60 | 18
18 | 18
20 | 21
20 | 24
22 | 26
25 | 27
27 | 30
28 | 31
31 | 33
31 | 38
35 | 42
41 | 46
46 | 52
48 | 61
62 | 78
70 | 90
79 | 96
93 | 117
112 | 138
133 | 162
163 | | 238
217 | | | | 40 | 18 | 22 | 26 | 29 | 32 | 36 | 41 | 46 | 47 | 54 | 62 | 70 | 78 | 100 | 109 | 131 | 151 | 188 | 226 | 260 | | | | | 6N@ | 44
48 | 17
17 | 22
22 | 24
23 | 27
26 | 30
28 | 34
32 | 37
35 | 40
38 | 46
39 | 49
47 | 55
56 | 63
63 | 71
65 | 92
80 | 106
103 | 116
109 | 142
123 | 168
159 | 205
191 | | 281
258 | | | | 8.33 | 54 | 18 | 20 | 23 | 25 | 29 | 29 | 32 | 35 | 37 | 43 | 49 | 57 | 58 | 73 | 87 | 105 | 112 | 148 | 174 | 197 | | 293 | | | | 60 | 18 | 21 | 22 | 25 | 27 | 31 | 31 | 33 | 35 | 41 | 45 | 51 | 59 | 68 | 83 | 98 | 109 | 129 | 155 | 178 | 205 | 265 | | 50 | | 40
44 | 23
22 | 27
27 | 31
31 | 37
34 | 41
39 | 48
44 | 54
49 | 55
52 | 62
56 | 71
65 | 83
75 | 92
84 | 102
102 | 122
111 | 153
144 | 176
167 | 195
182 | 248
222 | 288 | | | | | | 8N@ | 48 | 22 | 25 | 29 | 33 | 37 | 40 | 45 | 50 | 53 | 61 | 73 | 81 | 86 | 107 | 126 | 149 | 175 | 214 | 263 | 310 | | | | | 6.25 | 54
60 | 25
24 | 26
25 | 31
28 | 34
32 | 37
35 | 41
39 | 46
42 | 48
47 | 51
49 | 58
57 | 70
64 | 76
72 | 83
77 | 106
99 | 114
115 | 141
125 | 163
146 | 193
178 | 239
215 | 283
258 | | | | | | 40 | 28 | 33 | 41 | 46 | 55 | 62 | 66 | 74 | 78 | 92 | 105 | 115 | 131 | | 193 | 229 | 267 | 170 | 210 | 200 | 201 | | | | 10N@ | 44
48 | 27
27 | 32
32 | 37
35 | 44
41 | 49
48 | 56
54 | 63
57 | 67
64 | 72
68 | 88
80 | 102
94 | 107
103 | 116
109 | 155
135 | 180
160 | 208
186 | 239
214 | 302
274 | | | | | | | 5.00 | 54 | 26 | 29 | 33 | 40 | 43 | 50 | 55 | 58 | 62 | 74 | 82 | 96 | 109 | | 152 | 173 | 188 | 251 | 306 | | | | | | | 60 | 25 | 28 | 32 | 38 | 41 | 45 | 51 | 54 | 58 | 68 | 77 | 84 | 98 | | 142 | 167 | 180 | 225 | 275 | 317 | | | | | | 40
44 | 35
32 | 41
39 | 51
48 | 59
56 | 67
61 | 74
69 | 83
75 | 92
85 | 102
95 | 111
105 | 132
117 | 144
134 | 169
148 | | 252
228 | 303
260 | 313 | | | | | | | | 13N@ | 48 | 30 | 36 | 44 | 51 | 57 | 66 | 74 | 77 | 87 | 105 | 111 | 120 | 138 | 174 | 200 | 248 | 288 | | | | | | | | 3.85 | 54
60 | 29
28 | 34
33 | 40
40 | 48
45 | 53
50 | 60
57 | 68
64 | 74
71 | 78
73 | 90
83 | 108
94 | 114
113 | 125
115 | 157
148 | 191
174 | 216
216 | 256
235 | 326
297 | | | | | | | | 44 | 19 | 22 | 25 | 27 | 30 | 32 | 35 | 38 | 43 | 49 | 54 | 61 | 66 | 85 | 95 | 111 | 125 | 153 | 180 | 219 | 253 | | | | FN@ | 48 | 19 | 21 | 24 | 25 | 29 | 30 | 33 | 36 | 39 | 45 | 50 | 58 | 62 | 75 | 91 | 106 | 112 | 153 | 177 | 205 | | 005 | | | 5N@
11.00 | 54
60 | 20
20 | 21
22 | 23
22 | 25
24 | 26
27 | 29
27 | 31
31 | 34
32 | 36
34 | 44
39 | 46
45 | 52
47 | 60
53 | 67
64 | 88
77 | 94
90 | 108
97 | 128
116 | 158
137 | 182
162 | | 265
237 | | | | 66 | 21 | 22 | 23 | 24 | 26 | 28 | 29 | 32 | 33 | 37 | 42 | 46 | 49 | 62 | 71 | 80 | 93 | 112 | 133 | | 176 | 217 | | | | 44
48 | 18
18 | 23
23 | 26
24 | 29
29 | 33
31 | 37
34 | 40
37 | 46
42 | 47
46 | 54
52 | 62
59 | 70
66 | 77
71 | 100
92 | 114
106 | 131
116 | 151
143 | 188
177 | 226
205 | 261
246 | 279 | | | | 6N@ | 54 | 19 | 22 | 24 | 27 | 30 | 33 | 35 | 39 | 41 | 47 | 56 | 60 | 65 | 80 | 95 | 109 | 119 | 160 | 181 | 211 | 251 | | | | 9.17 | 60
66 | 19
20 | 20
20 | 23
23 | 25
26 | 30
29 | 31
32 | 34
32 | 37
35 | 40
37 | 44
41 | 50
49 |
58
52 | 61
59 | 77
72 | 96
84 | 105
99 | 112
110 | 149
130 | 174
156 | 197
187 | | 279
269 | | | | 44 | 22 | 25 | 28 | 33 | 36 | 41 | 46 | 51 | 54 | 62 | 71 | 78 | 91 | | 131 | 153 | - | 216 | | 107 | 203 | 209 | | | 7N@ | 48 | 21 | 24 | 28 | 31 | 34 | 39 | 45 | 46 | 52 | 59 | 68 | 77 | 79 | | 117 | _ | | 205 | - | 291 | 004 | | | | 7N@
7.86 | 54
60 | 19
20 | 24
23 | 26
25 | 29
29 | 32
31 | 36
34 | 39
37 | 43
41 | 48
43 | 57
50 | 64
59 | 69
67 | 78
70 | | 109
406 | 129
113 | | 182
166 | | 259
235 | | | | | | 66 | 20 | 23 | 25 | 29 | 32 | 33 | 37 | 38 | 43 | 50 | 54 | 60 | 68 | | 100 | 114 | | | 194 | 219 | 261 | 317 | | 55 | | 44
48 | 25
25 | 30
28 | 35
33 | 41
39 | 46
43 | 54
49 | 58
55 | 63
60 | 70
64 | 78
72 | 92
84 | 101
102 | 110
108 | 143
134 | | 195
182 | 228
205 | | | | | | | | 9N@ | 54 | 25 | 28 | 33 | 38 | 42 | 46 | 51 | 57 | 58 | 69 | 79 | 87 | 97 | 114 | 148 | 164 | 187 | 243 | | | | | | | 6.11 | 60
66 | 24
24 | 28
27 | 33
31 | 37
35 | 40
39 | 43
42 | 48
45 | 50
50 | 58
52 | 67
61 | 79
70 | 83
77 | 89
85 | | 124
117 | 154
145 | | 202
194 | | 309
286 | 310 | | | | | 44 | 31 | 37 | 46 | 52 | 58 | 66 | 70 | 78 | 91 | 101 | 107 | 131 | 142 | 179 | 205 | 253 | 297 | 134 | <u>_</u> +_ | 200 | 018 | | | | 1110 | 48 | 29 | 34 | 41 | 47 | 55 | 63 | 67 | 72 | 79 | 93 | 106 | 116 | 113 | 158 | | 231 | 269 | 200 | | | | | | | 11N@
5.00 | 54
60 | 28
26 | 33
32 | 39
37 | 46
41 | 49
48 | 57
51 | 62
59 | 69
64 | 73
68 | 81
80 | 96
84 | | 116
112 | | | 199
189 | 241
214 | | | | | | | | | 66 | 27 | 31 | 36 | 39 | 46 | 50 | 55 | 62 | 65 | 74 | 84 | 100 | 102 | 124 | 147 | 170 | | 261 | 293 | | | | | | | 44
48 | 39
36 | 46
43 | 55
50 | 63
63 | 71
71 | 79
77 | 92
80 | 102
94 | 107
104 | 121
112 | 144
134 | 157
148 | 179
172 | 218
206 | | 302 | | | | | | | | | 14N@ | 54 | 34 | 41 | 49 | 57 | 66 | 71 | 75 | 83 | 97 | 107 | 120 | 138 | 152 | 187 | 215 | 263 | 307 | | | | | | | | 3.93 | 60
66 | 31
32 | 39
38 | 46
44 | 52
50 | 61
57 | 68
63 | 77
71 | 78
75 | 85
80 | | | 123
119 | 142
130 | | 202
197 | | 284
262 | 321 | | | | | | Bearin | g Depth | 00 | ےد | 00 | 7-7 | 50 | 31 | 00 | | 2 in. | 00 | 30 | 1110 | 1119 | 100 | 100 | 101 | 220 | ۷۵۲ | |) in. | | | <u> </u> | Based on a 50ksi maximum yield strength # **U. S. CUSTOMARY** | Girder
Span | Joist
Spaces | Girder
Depth | | | | | | | Jo | oist C | | r Wei | | | | | | Foot | | | | | | | |----------------|-----------------|-----------------|------------|------------|----------|-------------|-----------|-------------|------------|--------------|----------|------------|------------|------------|------------|--------------|------------|--------------|------------|------------|------------|-------------|-------------|--------------| | (ft) | (ft) | (in) | Olf | 7 516 | OK | 40 EK | 1016 | 40 E16 | 4516 | 40.EM | | | | | | | | CO-EV | COLC | 7CV | 0.016 | 10516 | 10016 | 15016 | | | | LRFD
ASD | 6K
4K | 7.5K
5K | 9K
6K | 10.5K
7K | 12K
8K | 13.5K
9K | 15K
10K | 16.5K
11K | 18K | 21K
14K | 24K
16K | 27K
18K | 30K
20K | 37.5K
25K | 45K
30K | 52.5K
35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | | 48 | 21 | 23 | 26 | 28 | 31 | 34 | 37 | 42 | 43 | 50 | 55 | 62 | 66 | 85 | 96 | 111 | 125 | 153 | | 218 | 252 | | | | | 54 | 21 | 21 | 24 | 27 | 30 | 32 | 35 | 38 | 42 | 44 | 51 | 56 | 62 | 75 | 88 | 106 | 112 | 144 | 168 | 204 | 221 | 281 | | | 5N@ | 60 | 21 | 22 | 23 | 26 | 28 | 30 | 33 | 35 | 38 | 44 | 46 | 51 | 57 | 68 | 86 | 95 | 108 | 128 | 158 | 182 | 208 | 256 | | | 12.00 | 66 | 22 | 22 | 23 | 25 | 28 | 29 | 33 | 34 | 36 | 40 | 46 | 47 | 53 | 65 | 78 | 91 | 97 | 117 | 139 | 162 | 188 | 228 | | | | 72 | 22 | 23 | 23 | 24 | 27 | 29 | 31 | 34 | 35 | 38 | 44 | 47 | 52 | 62 | 72 | 81 | 93 | 113 | _ | 164 | 177 | 217 | | | | 48 | 21 | 23 | 26 | 31 | 34 | 38 | 40 | 46 | 47 | 58 | 66 | 70 | 77 | 100 | 114 | 131 | 152 | 188 | | 262 | | | | | | 54 | 1 9 | 23 | 25 | 29 | 32 | 35 | 38 | 41 | 45 | 53 | 59 | 67 | 71 | 92 | 106 | 117 | 119 | 169 | 204 | 229 | 269 | | | | 6N@ | 60 | 19 | 22 | 26 | 28 | 31 | 34 | 36 | 39 | 42 | 48 | 55 | 61 | 68 | 81 | 95 | 110 | 134 | 160 | | 209 | 242 | | | | 10.00 | 66 | 20 | 22 | 25 | 27 | 30 | 32 | 34 | 67 | 41 | 47 | 50 | 58 | 62 | 77 | 96 | 106 | 112 | 140 | 175 | 198 | 216 | 278 | | | | 72 | 20 | 21 | 24 | 27 | 29 | 32 | 33 | 35 | 38 | 43 | 50 | 52 | 60 | 72 | 84 | 99 | 114 | | 166 | 188 | 206 | 266 | | | | 48 | 24 | 28 | 32 | 38 | 41 | 48 | 54 | 55 | 62 | 70 | 78 | 92 | 101 | 121 | 152 | 176 | 192 | | 060 | | | | | | 8N@ | 54
60 | 23 | 26 | 31 | 35 | 39 | 43 | 47 | 55 | 56
52 | 64 | 72 | 81 | 94 | 109 | 134 | 158 | | 221
199 | 268
239 | 290 | | | | | 7.50 | 66 | 23
29 | 26
31 | 29
34 | 32
36 | 38 | 41 | 44
48 | 49
50 | 56 | 59
64 | 66 | 76
76 | 83 | 106 | 120 | 149
142 | 165 | 199 | 230 | 280 | 313 | | | | 7.50 | 72 | 30 | 31 | 33 | 34 | 40
38 | 46
43 | 40
47 | 49 | 51 | 59 | 72
69 | 74 | 83 | 101
102 | 116
118 | 126 | 147 | | 228 | 255 | 191 | | | 60 | | 48 | 30 | 36 | 43 | 50 | 58 | 65 | 66 | 75 | 78 | 92 | 106 | 116 | 132 | 157 | 193 | 229 | 265 | 130 | 220 | 200 | 131 | | | 00 | | 54 | 29 | 34 | 40 | 46 | 51 | 59 | 60 | 68 | 76 | 88 | 95 | 107 | 144 | | 180 | 205 | 232 | 296 | | | | | | | 10N@ | 60 | 27 | 33 | 38 | 41 | 47 | 53 | 61 | 61 | 70 | 79 | 90 | 97 | 110 | 136 | | 183 | 210 | 272 | | | | | | | 6.00 | 66 | 27 | 32 | 36 | 40 | 46 | 49 | 55 | 62 | 64 | 75 | 81 | 97 | 99 | 120 | 143 | 165 | 190 | 254 | 296 | | | | | | | 72 | 27 | 32 | 35 | 39 | 43 | 48 | 53 | 58 | 61 | 73 | 77 | 86 | 100 | - | 137 | 169 | | 225 | | | | | | | | 48 | 35 | 41 | 49 | 55 | 63 | 71 | 79 | 92 | 93 | 107 | 116 | 142 | 156 | | 229 | 266 | | | | | | | | | | 54 | 33 | 39 | 46 | 50 | 57 | 65 | 73 | 80 | 81 | 104 | 109 | 118 | 135 | 172 | 197 | 238 | 274 | | | | | | | | 12N@ | 60 | 32 | 37 | 41 | 50 | 56 | 59 | 67 | 74 | 79 | 96 | 107 | 112 | 121 | 163 | 187 | 219 | 247 | 316 | | | | | | | 5.00 | 66 | 31 | 36 | 40 | 47 | 53 | 60 | 61 | 68 | 76 | 85 | 99 | 110 | 115 | 145 | 177 | 201 | 228 | 288 | | | | | | | | 72 | 30 | 35 | 40 | 44 | 52 | 54 | 63 | 64 | 75 | 80 | 89 | 104 | 114 | 130 | 160 | 194 | 219 | 273 | 319 | | | | | | | 48 | 39 | 49 | 62 | 70 | 78 | 92 | 101 | 106 | 110 | 132 | 155 | 167 | 189 | 228 | 289 | | | | | | | | | | | 54 | 37 | 47 | 56 | 64 | 73 | 81 | 94 | 95 | 105 | 118 | 135 | 158 | 171 | 208 | 254 | 298 | | | | | | | | | 15N@ | 60 | 35 | 42 | 51 | 59 | 68 | 76 | 83 | 88 | 98 | 112 | 122 | 141 | 164 | 197 | 229 | 276 | 307 | | | | | | | | 4.00 | 66 | 36 | 44 | 54 | 57 | 65 | 73 | 80 | 88 | 94 | 113 | 118 | 130 | 158 | 193 | | 261 | 294 | | | | | | | | | 72 | 36 | 43 | 49 | 57 | 67 | 75 | 77 | 84 | 91 | 107 | 121 | 126 | 143 | 178 | | 240 | 283 | | | | | | | | | 54 | 22 | 25 | 28 | 31 | 34 | 38 | 43 | 45 | 47 | 55 | 66 | 69 | 75 | 92 | 107 | 132 | 152 | 177 | 207 | 250 | 288 | | | | 6N@ | 60 | 22 | 24 | 26 | 31 | 32 | 36 | 38 | 42 | 46 | 53 | 60 | 67 | 71 | 92 | 107 | 116 | 133 | 169 | 195 | 231 | 262 | | | | 10.83 | 66 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 40 | 43 | 49 | 54 | 61 | 68 | 80 | 96 | 110 | | 159 | | 209 | 236 | 076 | | | | 72
54 | 23
24 | 24
28 | 26
33 | 29
38 | 30
42 | 33
47 | 35
52 | 39
55 | 43
63 | 47
70 | 50
78 | 56
92 | 63
101 | 75
116 | 92
143 | 107 | 113 | 141
229 | | 196 | 218 | 276 | | | 8N@ | 60 | 23 | 26
26 | 32 | 36 | 39 | 47 | 5∠
48 | 50 | 57 | 65 | 76
72 | 80 | 94 | 1 | 135 | | | 210 | l | | | | | | 8.13 | 66 | 32 | 34 | 41 | 43 | 44 | 48 | 53 | 55 | 61 | 68 | 73 | 81 | | | 133 | | | | 246 | 296 | | | | | 5.15 | 72 | 32 | 34 | 34 | 42 | 45 | 47 | 49 | 54 | 57 | 69 | 74 | 82 | | 106 | | 143 | | | 241 | 277 | | | | | | 54 | 31 | 37 | 44 | 50 | 56 | 63 | 67 | 75 | 76 | _ | 107 | _ | | | 182 | | 243 | | | | | | | | 10N@ | 60 | 30 | 35 | 41 | 46 | 52 | 58 | 64 | 68 | 77 | 88 | | 1 | | 136 | | 196 | 222 | 283 | | | | | | 65 | 6.50 | 66 | 28 | 34 | 39 | 44 | 47 | 54 | 61 | 65 | 70 | 82 | 91 | I | 112 | | | 184 | 210 | | | | | | | | | 72 | 28 | 34 | 37 | 41 | 47 | 50 | 56 | 63 | 63 | 72 | 81 | 1 | | | 143 | 168 | 193 | 247 | 295 | | | | | | | 54 | 32 | 39 | 45 | 52 | 59 | 66 | 71 | 77 | 87 | 101 | 107 | 126 | | 176 | | 230 | 264 | | | | | | | | 11N@ | 60 | 32 | 36 | 45 | 48 | 54 | 61 | 69 | 73 | 78 | 94 | 108 | | | 160 | | 208 | 243 | | | | | | | | 5.91 | 66 | 30 | 36 | 41 | 46 | 50 | 56 | 62 | 70 | 71 | 83 | 97 | 111 | 113 | 141 | 166 | 200 | 215 | 287 | | | | | | | | 72 | 29 | 34 | 39 | 43 | 50 | 55 | 60 | 65 | 73 | 81 | | | 114 | | | 187 | 214 | 257 | | | | | | | | 54 | 36 | 42 | 50 | 57 | 65 | 72 | 80 | 92 | 102 | I | | 1 | | 192 | | 269 | | | | | | | | | 13N@ | 60 | 34 | 40 | 49 | 57 | 61 | 70 | 74 | 81 | 94 | 1 | | 1 | | 182 | | 252 | 286 | | | | | | | | 5.00 | 66 | 33 | 38 | 45 | 52 | 60 | 67 | 72 | 75 | 83 | 1 | | 116 | | | 199 | | 263 | | | | | | | D | - D- " | 72 | 32 | 38 | 43 | 51 | 55 | 62 | 70 | 77 | 78 | 88 | 110 | 116 | 120 | 158 | 182 | 210 | 253 | | | | | | | Bearin | g Depth | | | | | | | 7 | 1/2 in | | | | | | | | | | | 10 in | ١. | | | | Based on a 50ksi maximum yield strength # **U. S. CUSTOMARY** | Girder
Span | Joist
Spaces | Girder
Depth | | | | | | | Jo | oist C | | | | | nds F
anel I | | near | Foot | | | | | | | |----------------|-----------------|-----------------|----------|------------|----------|-------------|-----------|-------------|------------|-----------|------------|------------|------------|------------|-----------------|--------------|------------|--------------|------------|------------|------------|-------------|-------------|--------------|
| (ft) | (ft) | (in) | CI | | | | | | 4EV | 40 EV | | | | | | | AEIZ | EO EK | COV | 7FV | 001/ | 1051/ | 1001/ | 4501/ | | | | LRFD
ASD | 6K
4K | 7.5K
5K | 9K
6K | 10.5K
7K | 12K
8K | 13.5K
9K | 15K | 16.5K | 18K | 21K
14K | 24K
16K | 27K
18K | 30K
20K | 37.5K
25K | 45K
30K | 52.5K
35K | 60K
40K | 75K
50K | 90K
60K | 105K
70K | 120K
80K | 150K
100K | | | | 54 | 24 | 28 | 32 | 36 | 40 | 44 | 50 | 54 | 58 | 65 | 73 | 86 | 91 | | 131 | 153 | 175 | 226 | 263 | | | | | | | 60 | 23 | 26 | 31 | 33 | 38 | 44 | 46 | 51 | 53 | 63 | 67 | 75 | 87 | | 126 | 153 | 165 | 204 | | 284 | | | | | 7N@ | 66 | 23 | 27 | 31 | 32 | 36 | 39 | 45 | 47 | 52 | 59 | 67 | 71 | 78 | | 114 | 135 | 156 | ı | 222 | 260 | 006 | | | | 10.00 | 72
84 | 23
26 | 26
28 | 29
30 | 33
32 | 35
35 | 39
37 | 42
40 | 47
44 | 48
47 | 55
51 | 62
59 | 70
66 | 78
71 | | 111
102 | 121
117 | 140
125 | 183
170 | 211
192 | 145
220 | 286
254 | 313 | | | | 54 | 27 | 33 | 37 | 44 | 48 | 54 | 61 | 66 | 70 | 90 | 100 | 105 | 114 | | 174 | 202 | 225 | 276 | 102 | 220 | 254 | 010 | | | | 60 | 25 | 31 | 35 | 40 | 47 | 49 | 56 | 64 | 67 | 76 | 93 | 102 | 107 | | 156 | 180 | 205 | l . | | | | | | | 9N@ | 66 | 25 | 31 | 35 | 40 | 47 | 49 | 56 | 62 | 69 | 74 | 82 | 96 | 106 | 121 | 149 | 174 | 200 | l . | | | | | | | 7.78 | 72 | 25 | 31 | 35 | 40 | 46 | 49 | 56 | 57 | 63 | 72 | 81 | 93 | 99 | | 141 | 163 | | | 273 | 007 | 047 | | | | | 84
54 | 25
33 | 31
43 | 35
50 | 40
58 | 43
66 | 49
67 | 51
75 | 53
86 | 58
92 | 67
106 | 76
115 | 80
132 | 89
153 | _ | 119
217 | 145
250 | 171
258 | 195 | 234 | 287 | 317 | | | | | 60 | 32 | 40 | 46 | 51 | 59 | 67 | 68 | 76 | 87 | 94 | 108 | 118 | 134 | 167 | | 231 | 236 | | | | | | | 70 | 11N@ | 66 | 32 | 38 | 44 | 47 | 55 | 61 | 68 | 40 | 78 | 91 | 97 | 110 | 120 | 160 | | 207 | 221 | 290 | | | | | | | 6.36 | 72 | 31 | 36 | 41 | 47 | 54 | 57 | 63 | 72 | 73 | 83 | 98 | 112 | 114 | | 166 | 191 | 196 | 256 | 300 | | | | | | | 84 | 31 | 35 | 39 | 45 | 50 | 53 | 58 | 68 | 68 | 76 | 87 | 99 | 106 | _ | 149 | 172 | 007 | | | | | | | | | 54
60 | 36
34 | 45
41 | 52
48 | 59
56 | 67
60 | 75
68 | 78
77 | 92
80 | 101
93 | 107
107 | 132
115 | 142
133 | 154
145 | 192
180 | | 268
245 | 287
267 | | | | | | | | 12N@ | 66 | 32 | 39 | 47 | 50 | 58 | 65 | 70 | 78 | 82 | 96 | 110 | 120 | 136 | | 198 | 224 | | 304 | | | | | | | 5.83 | 72 | 33 | 38 | 44 | 50 | 57 | 63 | 69 | 73 | 71 | 94 | 108 | 117 | 124 | | 188 | 214 | • | | | | | | | | | 84 | 31 | 37 | 42 | 47 | 53 | 55 | 65 | 69 | 80 | 86 | 91 | 106 | 119 | 142 | 170 | 196 | 221 | 277 | 318 | | | | | | | 54 | 40 | 48 | 58 | 66 | 75 | 90 | 92 | 105 | 106 | I | 152 | 164 | 177 | | 266 | | | | | | | | | | 4410 | 60 | 38 | 46 | 56 | 64 | 71 | 79 | 92 | 93 | 104 | 117 | 133 | 155 | 169 | | 244 | 288 | | | | | | | | | 14N@
5.00 | 66
72 | 36
36 | 43
42 | 50
51 | 58
58 | 65
65 | 74
72 | 81
76 | 94
84 | 96
95 | 110
110 | 120
115 | 136
126 | 160
145 | | 233
223 | 267
251 | 285 | | | | | | | | 3.00 | 84 | 34 | 43 | 47 | 54 | 62 | 66 | 74 | 78 | 83 | 101 | 108 | 122 | 134 | 166 | | 234 | 262 | 320 | | | | | | | | 60 | 29 | 32 | 38 | 43 | 47 | 52 | 58 | 65 | 66 | 78 | 91 | 100 | 105 | | 153 | 189 | 205 | 253 | | | | | | | | 66 | 29 | 32 | 36 | 40 | 46 | 48 | 53 | 59 | 63 | 71 | 79 | 93 | 105 | 126 | | 177 | | 233 | | | | | | | 8N@ | 72 | 30 | 32 | 34 | 38 | 43 | 47 | 79 | 54 | 61 | 69 | 78 | 89 | 95 | | 136 | 159 | 182 | | 258 | | | | | | 10.00 | 84
96 | 30
30 | 32
32 | 34
34 | 38
38 | 43
43 | 47
47 | 48
49 | 54
54 | 61
61 | 69
69 | 78
78 | 89
89 | 95
95 | 115
115 | | 157
141 | 179 | l . | 264
225 | 272 | 301 | | | | | 60 | 32 | 37 | 42 | 49 | 55 | 62 | 70 | 78 | 78 | 100 | 105 | 115 | 132 | _ | 191 | 226 | 252 | 133 | 223 | 212 | 301 | | | | | 66 | 35 | 42 | 46 | 55 | 61 | 64 | 72 | 77 | 86 | 98 | 109 | 114 | 129 | | 194 | 219 | 250 | | | | | | | | 10N@ | 72 | 34 | 38 | 46 | 51 | 57 | 64 | 65 | 74 | 78 | 91 | 101 | 110 | 126 | | 183 | 207 | 235 | | | | | | | | 8.00 | 84 | 34 | 37 | 46 | 48 | 53 | 59 | 61 | 67 | 72 | 82 | 95 | 104 | 113 | 135 | | 185 | 212 | l . | 004 | | | | | 80 | | 96
60 | 35
40 | 36
47 | 42
59 | 48
66 | 50
71 | 55
78 | 58
92 | 64
101 | 72
106 | 78
116 | 86
143 | 98
155 | 104
175 | | 143
252 | 171 | 192 | 239 | 281 | | | | | 00 | | 66 | 38 | 47 | 54 | 60 | 68 | 77 | 80 | 94 | 103 | 109 | 134 | 145 | 157 | | 231 | 261 | | | | | | | | | 13N@ | 72 | 37 | 44 | 50 | 59 | 67 | 71 | 79 | 83 | 96 | 111 | 120 | 137 | 152 | | 213 | 253 | 298 | | | | | | | | 6.15 | 84 | 36 | 43 | 50 | 54 | 59 | 67 | 75 | 79 | 84 | 101 | 112 | 119 | 128 | | 193 | 229 | 255 | | | | | | | | | 96 | 37 | 42 | 47 | 53 | 57 | 66 | 72 | 81 | 79 | 94 | | 118 | 124 | | 177 | 201 | 235 | 294 | | | | | | | | 60
66 | 47
44 | 55
EE | 67
65 | 78
72 | 92
80 | 101
94 | 107
104 | | | 153 | | 192
180 | | 252
232 | 207 | | | | | | | | | | 16N@ | 72 | 43 | 55
51 | 59 | 70 | 79 | 83 | | | 117
111 | 134
121 | | 162 | 185 | | | | | | | | | | | | 5.00 | 84 | 42 | 49 | 57 | 64 | 74 | 81 | | 104 | 106 | 120 | | | 174 | | | 287 | | | | | | | | | | 96 | 44 | 48 | 58 | 64 | 70 | 81 | 86 | 92 | 97 | 114 | 128 | 140 | 159 | 196 | 231 | 268 | 298 | | | | | | | | an a | 72 | 38 | 40 | 44 | 47 | 52 | 57 | 61 | 68 | 76 | 88 | 94 | 108 | | 145 | | 205 | | 278 | | | | | | | 9N@
10.00 | 84
96 | 38
38 | 40
40 | 44
44 | 47
47 | 52
52 | 57
57 | 61
61 | 69
67 | 73
71 | 82
77 | 94
85 | 104
98 | 114
108 | 134
125 | | 187
170 | | 258
221 | 27g | | | | | | 10.00 | 108 | 38 | 40 | 44 | 47 | 52 | 57 | 61 | 67 | 70 | 75 | 80 | 89 | | 114 | | | | | 247 | 286 | | | | | | 72 | 41 | 46 | 51 | 61 | 64 | 73 | 78 | 89 | 94 | | 115 | 131 | | 181 | | 246 | . , | | | | | | | | 11N@ | 84 | 41 | 45 | 47 | 53 | 61 | 67 | 72 | 78 | 90 | 94 | 113 | 120 | | 161 | | | 250 | | | | | | | | 8.18 | 96 | 44 | 45 | 47 | 50 | 56 | 64 | 70 | 72 | 80 | 94 | ı | 107 | 123 | | | | | 286 | | | | | | 90 | | 108
72 | 45
45 | 46
55 | 48
61 | 51
72 | 57
80 | 60
94 | 66
103 | 75
109 | 76
114 | 84
134 | 98
156 | 104
179 | | 140
233 | | 186 | 204 | 262 | | | | | | 30 | 15N@ | 84 | 47 | 50 | 58 | 65 | 73 | 81 | 93 | | | | | 163 | | 210 | | 295 | | | | | | | | | 6.00 | 96 | 48 | 50 | 57 | 64 | 71 | 81 | 87 | l | | | | | 163 | 199 | 232 | 261 | 302 | | | | | | | | | 108 | 49 | 53 | 57 | 62 | 70 | 75 | 83 | 93 | 97 | 113 | 126 | 134 | 152 | 182 | | | 277 | | | | | | | | 4000 | 72 | 49 | 62 | 73 | 80 | | | | | | | | | 229 | | 00- | | | | | | | | | | 18N@ | 84 | 49 | 62 | 74 | 82 | | | | | 130 | 149 | | | 210 | | | | | | | | | | | | 5.00 | 96
108 | 49
49 | 60
61 | 69
66 | 77
74 | 86
87 | | 111
101 | | | 139
132 | | | 199
184 | | | 208 | | | | | | | | Bearin | g Depth | 100 | 73 | υı | 00 | ,4 | | 7 1/2 | | 110 | 110 | 102 | 170 | 100 | 104 | رددن | 201 | 200 | 10 ir | ١. | | | | | | | O 7F | Based on a 50ksi maximum yield strength # **U. S. CUSTOMARY** | Girder | Joist | Girder | | | | | | | J | oist G | irde | r Wei | ght - | Pou | nds F | Per Li | inear | Foot | | | | | | | |--------------|--------------|---------------|----------|----------|----------|----------|------------|-------|------------|--------|------------|------------|------------|------------|------------|------------|-------|-------|---------|-----|-----|------|------|------| | Span
(ft) | Spaces (ft) | Depth
(in) | | | | | | | | | L | oad c | n Ea | ch P | anel | Point | | | | | | | | | | (11) | . , | LRFD | 6K | 7.5K | 9K | 10.5K | 12K | 13.5K | 15K | 16.5K | 18K | 21K | 24K | 27K | 30K | 37.5K | 45K | 52.5K | 60K | 75K | 90K | 105K | 120K | 150K | | | | ASD | 4K | 5K | 6K | 7K | 8K | 9K | 10K | 11K | 12K | 14K | 16K | 18K | 20K | 25K | 30K | 35K | 40K | 50K | 60K | 70K | 80K | 100K | | | | 84 | 56 | 57 | 58 | 62 | 64 | 72 | 76 | 88 | 90 | 103 | 118 | 129 | 142 | 172 | 200 | 225 | 257 | | | | | | | | 10N@ | 96 | 58 | 58 | 59 | 61 | 64 | 67 | 70 | 78 | 88 | 94 | 106 | 120 | 131 | 152 | 180 | 204 | 228 | | | | | | | | 10.00 | 108 | 58 | 60 | 60 | 61 | 63 | 68 | 70 | 73 | 77 | 93 | 96 | 111 | 111 | 139 | 170 | 188 | 209 | 258 | | | | | | | | 120 | 60 | 60 | 62 | 64 | 66 | 67 | 68 | 71 | 74 | 85 | 99 | 108 | 113 | 139 | 157 | 188 | 201 | 242 | 289 | | | | | | | 84 | 50 | 54 | 58 | 66 | 70 | 75 | 89 | 92 | 101 | 112 | 129 | 138 | 159 | 187 | 221 | 257 | | | | | | | | | 12N@ | 96 | 50 | 54 | 57 | 61 | 68 | 70 | 80 | 84 | 96 | 106 | 116 | 123 | 137 | 179 | 205 | 228 | 271 | | | | | | | | 8.33 | 108 | 52 | 54 | 58 | 62 | 65 | 72 | 74 | 79 | 89 | 101 | 110 | 121 | 128 | 164 | 193 | 221 | 246 | 299 | | | | | | | | 120 | 54 | 57 | 60 | 62 | 66 | 69 | 77 | 79 | 86 | 92 | 107 | 117 | 126 | 151 | 178 | 206 | 239 | 283 | | | | | | | | 84 | 55 | 60 | 71 | 76 | 83 | 96 | 110 | 112 | 119 | 139 | 161 | 184 | 199 | 235 | | | | | | | | | | | 16N@ | 96 | 56 | 60 | 67 | 75 | 79 | 88 | 102 | | 119 | 128 | 145 | 168 | | 218 | | 301 | | | | | | | | 100 | 6.25 | 108 | 58 | 63 | 67 | 72 | 81 | 87 | 93 | | 111 | 125 | 136 | 157 | 180 | 204 | _ | 292 | | | | | | | | | | 120 | 60 | 65 | 68 | 74 | 79 | 90 | 93 | | 110 | 117 | 134 | 147 | 166 | 208 | 248 | 275 | 304 | | | | | | | | | 84 | 57 | 65 | 73 | 82 | 92 | 98 | 112 | 114 | 123 | 151 | 164 | 187 | 203 | 250 | | | | | | | | | | | 17N@ | 96 | 60 | 65 | 72 | 81 | | 103 | - | 1 | 123 | 145 | 177 | 179 | 198 | 256 | | | | | | | | | | | 5.88 | 108 | 64 | 67 | 72 | 76 | 86 | 96 | | | 123 | I | 158 | 172 | - | 231 | - | 308 | | | | | | | | | | 120 | 67 | 68 | 73 | 80 | 85 | 90 | | | 119 | | | 167 | _ | 214 | 250 | 281 | 330 | | | | | | | | 0010 | 84 | 67 | 77 |
87 | 105 | | 122 | 132 | 1 | 159 | | | 226 | 246 | 070 | | | | | | | | | | | 20N@
5.00 | 96
108 | 67
66 | 73
72 | 82
79 | 95 | 111
101 | 120 | 126
125 | | 152
131 | 177 | | 211 | 227
207 | 279
267 | 216 | | | | | | | | | | 5.00 | 120 | 71 | 72
75 | 79
82 | 91
88 | | 106 | _ | | 136 | 162
149 | 184
170 | 197
193 | - | 267
246 | | 332 | | | | | | | | Bo | aring De | | / 1 | 75 | 02 | 00 | 7 1/2 | | 120 | 123 | 130 | 143 | 170 | 193 | 200 | 240 | 209 | | l0 in. | | | | | | | De | aring De | pui | | | | | 1 1/2 | 111. | | | | | | | | | | | io iii. | | | | | | # **NOTES** # FIRE-RESISTANCE RATINGS WITH STEEL JOISTS The Underwriters Laboratories (U.L.) Fire Resistance Directory lists hundreds of assemblies and their fire resistance ratings. The Specifying Professional can choose between numerous Floor-Ceiling and Roof-Ceiling assemblies that include steel joists and Joist Girders. As a convenience, a selected number of assemblies are listed on the following pages. In addition, the Steel Joist Institute's Technical Digest #10 "Design of Fire Resistive Assemblies with Steel Joists" has a complete listing of steel joist assemblies and additional information about fire ratings. However, the listing that follows and the Technical Digest are intended as a guide only, and the Specifying Professional must refer to the current U.L. Fire Resistance Directory for complete design requirements. Hundreds of fire tests on steel joist-supported assemblies have been conducted at nationally recognized testing laboratories in accordance with ASTM Standard E119, ANSI A2.1/UL 263, and NFPA 251. Because of practical loading restrictions and limitations of furnace dimensions, the vast majority of these tests were run using lightweight joists normally from 8 inches to 14 inches (203 mm to 356 mm) deep. This practice was advantageous in that it established the minimum acceptable joists at the shallow and lightweight end of the joist load tables. This also resulted in a specified minimum joist designation being listed in the U.L. Fire Resistance Assembly, which is the joist that combines the required minimum depth and minimum weight per foot. Joists of the same series which equal or exceed the specified minimum joist depth and joist weight per foot may be used provided the accessories are compatible. The dimension from the bottom chord of the joists to the ceiling, whether given or calculated, is a minimum. Where a U.L. Fire Resistance Assembly is being utilized, the Specifying Professional shall indicate the assembly number being used on the structural contract drawings. In addition, the Specifying Professional shall consider the following, as applicable: - Joist designations specified on the structural contract drawings shall not be less than the minimum size for that assembly. The assembly may also require a minimum bridging size that may be larger than required by the SJI Specifications for the particular designation and joist spacing. - Some assemblies stipulate minimum size materials or minimum cross sectional areas for individual joist and Joist Girder components. It is the responsibility of the Specifying Professional to show all special requirements on the contract drawings. - Note that the maximum joist spacing shown for Floor-Ceiling Assemblies may be increased from the spacing listed in the U.L. Fire Resistance Directory to a maximum of 48 inches on center, provided the floor slab meets the structural requirements and the spacing of hanger wires supporting the ceiling is not increased. - Some assemblies stipulate an allowable maximum joist design stress level less than the 30 ksi (207 MPa) used in the joist and Joist Girder Specifications. It is the responsibility of the Specifying Professional to apply the proper stress level reductions (when applicable) when selecting joists and/or Joist Girders. This is accomplished by prorating the joist and/or Joist Girder capacities. To adjust the stress level of joists or Joist Girders, multiply the design load by the ratio of the joist design stress to the required maximum [e.g. 30/26 (207/179), 30/24 (207/165), 30/22 (207/152)], and then using this increased load, select a joist or Joist Girder from the load and/or weight tables. - Some U.L. Roof-Ceiling Assemblies using direct applied protection limit the spacing of the joists for certain types and gages of metal decking – refer to the U.L. Fire Resistance Directory for this information. - Where fire protective materials are to be applied directly to the steel joists or Joist Girders, it is often desired to have the joist furnished as unpainted. The Specifying Professional should indicate on the structural contract drawings if the joists or Joist Girders are to be painted or not. - Certain older U.L. fire rated assemblies may refer to joist series that predate the K-Series joists. Where one of these assemblies is selected, refer to the U.L Fire Resistance Directory for special provisions for substituting a K-Series joist in lieu of an S-, J-, and/or H-Series joist. FLOOR - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION | Restrained | Protection | Minimum Joist | Conc | rete | Maximum Joist | Minimum
Primary Support | UL Desigi | |--------------------|----------------|----------------|----------------------------|-------------|---------------|----------------------------|-----------| | Assembly
Rating | Material | Size | Minimum
Thickness (in.) | Туре | Spacing (in.) | Member | Number | | | Acoustical | 12K1, 18LH02 | 2.5 | LW, NW | NL | 20G@13plf | D216 | | | | | | | | W8 x 15 | D219 | | 1 Hr. | | 10K1 | 2.5 | | 72 | 20G@14plf*
W6 x 12 | G205 | | | Exposed Grid | 10K1 | 2 | NW | 72 | W6 x 12 | G208 | | | | 10K1 | 2.5 | | 72 | 20G@14plf*
W6 x 12 | G256 | | | Gypsum Board | 10K1 | 2.5 | NW | 48 | W8 x 24 | G548 | | | Acoustical | | | LW, NW | | 20G@13plf | D216 | | | | 12K1, 18LH02 | 2.5 | | - NL | W8 x 15 | D219 | | | Gypsum Board | 121(1, 1021102 | 2.0 | NW | | 20G@20plf
W8 x 28 | D502 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W6 x 12 | G203 | | | | 10K1 | 2.5 | | 72 | 20G@14plf*
W6 x 12 | G205 | | | | 10K1 | 2 | | 72 | W6 x 12 | G208 | | 1 1/2 Hr. | | 10K1 | 2.5 | | 24 (48) | WOXIZ | G213 | | | Exposed Grid | 10K1 | 2.5 | NW | 24 (48) | 20G@13plf
W8 x 31 | G228 | | | | 10K1 | 2 | | 24 (48) | 20G@13plf
W8 x 24 | G229 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W6 x 12 | G243 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 31 | G268 | | | Gypsum Board | 12K1 | 2 | NW | 24 (48) | NS | G502 | | | Acquatical | | | I MAY BINAY | | 20G@13plf | D216 | | | Acoustical | 12K1, 18LH02 | 2.5 | LW, NW | NL NL | W8 x 15 | D219 | | | Gypsum Board | IZKI, IOLIIUZ | 2.5 | NW | INL | 20G@20plf
W8 x 28 | D502 | | | | 10K1 | 2.25 | | 24 (48) | W6 x 25 | G023 | | | Concealed Grid | 8K1 | 2.5 | NW | 24 (48) | 20G@13plf
W8 x 20 | G031 | | 2 Hr. | | 10K1 | 2.5 | | 30 (48) | 20G@13plf
W10 x 21 | G036 | | 4 111. | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W6 x 12 | G203 | | | | 10K1 | 2.5 | | 72 | 20G@14plf*
W6 x 12 | G205 | | | Exposed Grid | 10K1 | 2.5 | NW | 72 | W6 - 10 | G208 | | | | 10K1 | 2.5 | | 24 (48) | W6 x 12 | G213 | | | | 10K1 | 2.5 | | 24 (48) | W8 x 31 | G227 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 31 | G228 | (Continued Next Page) # FLOOR - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION | Restrained | Protection | Minimum Joist | Conc | rete | Maximum Joist | Minimum
Primary Support | UL Desig | |-----------------|----------------|-----------------------|----------------------------|--------|---------------|----------------------------|-----------------| | Assembly Rating | Material | Size | Minimum
Thickness (in.) | Туре | Spacing (in.) | Member | Number | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 24 | G229 | | | Exposed Grid | 10K1 | 2.5 | NW | 24 (48) | 20G@13plf
W6 x 12 | G243 | | | Exposed Gild | 10K1 | 2.5 | | 72 | 20G@14plf*
W6 x 12 | G256 | | 2 Hr. | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 31 | G268 | | | | 10K1 | 2 | | 24 (48) | NS | G505 | | | | 10K1 | 2.5 | | 24 (48) | 20G@14plf*
W8 x 31 | G514 | | | Gypsum Board | 10K1 | 2.5 | NW | 24 (48) | 20G@13plf
W10 x 21 | G523 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W8 x 24 | G529 | | | | 10K1 | 2.5 | | 24 (48) | 20G@13plf
W10 x 21 | G547 | | | Acoustical | 12K1, 18LH02 | 3.25 | LW, NW | NL | 20G@13plf | D216 | | | | , - | | | | W8 x 15 | D219 | | | Concealed Grid | 10K1 | 3.5 | NW | 24 (48) | 20G@13plf
W8 x 20 | G033 | | | Concealed and | 10K1 | 3.25 | 1444 | 30 (48) | 20G@13plf
W10 x 21 | G036 | | | | 10K1 | 3.5 | | 48 | 20G@14plf*
W6 x 12 | G205 | | | | 10K1 | 3.5 | | 24 (48) | W6 x 12 | G213 | | 3 Hr. | Exposed Grid | 10K1 | 3.25 | NW | 24 (48) | 20G@13plf
W8 x 24 | G229 | | | | 10K1 | 3.5 | | 48 | 20G@14plf*
W6 x 12 | G256 | | | | 10K1
(22 ksi max.) | 2.63 | | 24 (48) | 20G@13plf
W8 x 31 | G268 | | | | 10K1 | 3 | | 24 (48) | 20G@13plf
W10 x 21 | G523 | | | Gypsum Board | 10K1 | 2.75 | NW | 24 (48) | 20G@13plf
W8 x 24 | G529 | | | | 10K1 | 3 | | 24 (48) | 20G@13plf
W10 x 21 | G547 | ^{*} Special Area Requirements NL = Not Listed NS = Not Specified # FLOOR - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS | Restrained | Protection | Minimum Joist | Conc | rete | Maximum Joist | Minimum | UL Desigr | |--------------------|------------|---------------|----------------------------|--------|---------------|---------------------------|-----------| | Assembly
Rating | Material | Size | Minimum
Thickness (in.) | Туре | Spacing | Primary Support
Member | Number | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | A.II | W0 00 | D780 | | | | NS | 3.25 | LW | NL | W8 x 28 | D782 | | | | * | 2.5 | LW | | | Door | | | | 10K1* | 3.5 | NW | | | D925 | | | | 16K6* | NS | LW, NW | 42 | 20G@20plf
W8 x 28 | G701 | | | | | 3 | LW | | | | | | | 16K6 | 3.75 | NW
 50.5 | NS | G702 | | 1 Hr. | SAFRM | 16K6* | 2.5 | LW, NW | 42 | NS | G705 | | | | | 3 | LW | | N.C | | | | | 16K6 | 3.75 | NW | 50.5 | NS | G706 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | | 42 | 20g@20plf
W8 x 24 | G801 | | | | | 3 | LW | | | | | | | 12K1 | 3.75 | NW | 50.5 | NS | G802 | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | | | D780 | | | | NS | 3.25 | LW | NL | W8 x 28 | D782 | | | | | 3 | LW | | | | | | | 10K1* | 4 | NW | | | D925 | | | | 16K6* | 2.5 | LW, NW | 42 | 20G@20plf
W8 x 28 | G701 | | | | 40170 | 3.5 | LW | 50.5 | NG | 0=00 | | 4.4/0 | | 16K6 | 4.5 | NW | 50.5 | NS | G702 | | 1 1/2 Hr. | SAFRM | 16K6* | 2.5 | LW, NW | 42 | NS | G705 | | | | | 3.5 | LW | | | 0.000 | | | | 16K6 | 4.5 | NW | 50.5 | NS | G706 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | * | 42 | 20G@20plf
W8 x 24 | G801 | | | | 101/5 | 3.5 | LW | E0.5 | | 0000 | | | | 12K5 | 4.5 | NW | 50.5 | NS | G802 | (Continued Next Page) # FLOOR - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS | Restrained
Assembly | Protection | Minimum Joist | Conc
Minimum | | Maximum Joist | Minimum
Primary Support | UL Design | |------------------------|------------|---------------|-----------------|--------|---------------|----------------------------|-----------| | Rating | Material | Size | Thickness (in.) | Туре | Spacing | Member | Number | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | NL | W8 x 28 | D780 | | | | NS | 3.25 | LW | | W6 X 20 | D782 | | | | 10K1* | 3.25 | LW | | | D925 | | | | TOKT | 4.5 | NW | | | D323 | | | | 16K6* | 2.5 | LW, NW | 42 | 20G@20plf
W8 x 28 | G701 | | | | 4010 | 4 | LW | 50.5 | NO | 0700 | | 0.11 | 04504 | 16K6 | 5.25 | NW | 50.5 | NS | G702 | | 2 Hr. | SAFRM | 16K6* | 2.5 | LW,NW | 42 | NS | G705 | | | | 40160 | 4 | LW | | | 0=00 | | | | 16K6 | 5.25 | NW | 50.5 | NS | G706 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.5 | LW, NW | 42 | W8 x 28 | G709 | | | | 16K6* | 2.5 | | 42 | 20G@20plf
W8 x 24 | G801 | | | | | 4 | LW | | | | | | | 12K5 | 5.25 | NW | 50.5 | NS | G802 | | | | NS | 2.5 | | | | D759 | | | | 10K1 | 2.5 | LW, NW | | | D779 | | | | 10K1 | 2.5 | | | | D780 | | | | NS | 3.25 | LW | NL | W8 x 28 | D782 | | | | | 4.19 | LW | | | | | | | 10K1* | 5.25 | NW | | | D925 | | 3 Hr. | SAFRM | 16K6* | NS | | 42 | 20G@20plf
W8 x 28 | G701 | | | | 16K6* | 2.75 | | 42 | NS | G705 | | | | 16K6* | 2.75 | LW, NW | 42 | 20G@20plf
W8 x 28 | G708 | | | | NS | 2.75 | | 42 | W8 x 28 | G709 | | | | 16K6* | 2.75 | | 42 | 20G@20plf
W8 x 24 | G801 | | 4 U» | CAEDM | 10K1 | 2.5 | LW, NW | MI | We v 20 | D779 | | 4 Hr. | SAFRM | NS | 3.25 | LW | NL | W8 x 28 | D782 | ^{*} Special Area Requirements NL = Not Listed NS = Not Specified # **ROOF - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION** | Restrained
Assembly | Protection | Minimum Joist | | p Hoof | Maximum Joist | Minimum
Primary Support | UL Desig | |------------------------|--------------|---------------|------------------------------|------------------------|---------------|----------------------------|-----------------| | Rating | Material | Size | Deck Material
Description | Insulation | Spacing (in.) | Member | Number | | | | 12K1 | 22 MSG Min. | | 84 | W8 x 17 | P201 | | | | 10K1 | 26 MSG Min. | | 48 | W6 x 12 | P202 | | | | 10K1 | 26 MSG Min. | | 48 | 20G@13plf | P211 | | | | 12K3 | 28 MSG Min. | Fiber Board | 72 | 20G@13plf
W8 x 17 | P214 | | | | 12K1 | 26 MSG Min. | | 72 | 20G@13plf
W6 x 12 | P225 | | | | 12K3 | 24 MSG Min. | Building Units | 48 | NS | P227 | | | | 12K3 | 26 MSG Min. | Fiber Board | 72 | 20G@13plf
W6 x 12 | P230 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 48 | 20G@14plf*
W8 x 15 | P231 | | | | 12K3 | 24 MSG Min. | Foamed Plastic | 72 | W8 x 15 | P235 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W8 x 15 | P246 | | | Exposed Grid | 12K5 | 26 MSG Min. | Fiber Board | 48 | W6 x 12 | P250 | | | Exposed and | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | | | 10K1 | 22 MSG Min. | Fiber Board | 72 | W6 x 12 | P254 | | 1 Hr. | | 10K1 | 28 MSG Min. | Insulating
Concrete | 72 | W8 x 15 | P255 | | | | 10K1 | 24 MSG Min. | Fiber Board | 72 | NS | P259 | | | | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P261 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | 20G@14plf*
W8 x 15 | P264 | | | | 10K1 | Metal Roof Deck
Panels | Batts and
Blankets | 60 | NS | P265 | | | | 10K1 | 26 MSG Min. | Fiber Board | 48 | W6 x 16 | P267 | | | | 10K1 | Metal Roof Deck
Panels | Batts and
Blankets | 60 | NS | P268 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | 20G@14plf*
W8 x 15 | P269 | | | | 10K1 | 24 MSG Min. | | NS | W6 x 16 | P301 | | | Fiber Board | 10K1 | 22 MSG Min. | Fiber Board | 48 | NS | P302 | | | | 10K1 | 22 MSG Min. | | NS | W6 x 16 | P303 | | | | 12K3 | 26 MSG Min. | Insulating
Concrete | 60 | W8 x 24 | P509 | | | Gypsum Board | 12K3 | 24 MSG Min. | Fiber Board | 72 | 20G@13plf
W8 x 13 | P510 | | | | 10K1 | 20 MSG Min. | Fiber Board | 48 | NS | P519 | (Continued Next Page) # **ROOF - CEILING ASSEMBLIES WITH MEMBRANE PROTECTION** | Restrained | Protection | Minimum Joist | Built U | p Roof | Maximum Joist | Minimum | UL Design | |--------------------|--------------|---------------|------------------------------|------------------------|---------------|---------------------------|-----------| | Assembly
Rating | Material | Size | Deck Material
Description | Insulation | Spacing (in.) | Primary Support
Member | Number | | | | 12K1 | 26 MSG Min. | Fiber Board | 72 | 20G@13plf
W6 x 12 | P225 | | | | 12K3 | 24 MSG Min. | Building Units | 48 | NS | P227 | | | | 12K3 | 26 MSG Min. | Fiber Board | 48 | 20G@13plf
W6 x 12 | P230 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 48 | 20G@14plf*
W8 x 24 | P231 | | | | 12K5 | 26 MSG Min. | Fiber Board | 48 | W6 x 12 | P250 | | | Exposed Grid | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | 1 1/2 Hr. | | 10K1 | 24 MSG Min. | Fiber Board | 72 | NS | P259 | | | | 10K1 | Metal Roof Deck
Panels | Batts and Blankets | 60 | NS | P265 | | | | 10K1 | 20 MSG Min. | Fiber Board | 48 | NS | P266 | | | | 10K1 | Metal Roof Deck
Panels | Batts and Blankets | 60 | NS | P268 | | | | 12K1 | 26 MSG Min. | Insulating
Concrete | 72 | 20G@14plf*
W8 x 24 | P269 | | | Fiber Board | 10K1 | 24 MSG Min. | Fiber Board | NS | W6 x 16 | P301 | | | Metal Lath | 12K5 | 22 MSG Min. | Fiber Board | 72 | NS | P404 | | | Gypsum Board | 12K3 | 24 MSG Min. | Fiber Board | 72 | 20G@13plf
W8 x 13 | P510 | | | | 10K1 | 24 MSG Min. | Fiber Board | 72 | W6 x 12 | P237 | | | Exposed Grid | 12K1 | 28 MSG Min. | Insulating
Concrete | 72 | 20G@13plf
W6 x 12 | P251 | | | | 10K1 | 20 MSG Min. | Fiber Board | 48 | NS | P266 | | 2 Hr. | Fiber Board | 10K1 | 24 MSG Min. | Fiber Board | NS | W6 x 16 | P301 | | | Metal Lath | 12K5 | 22 MSG Min. | Fiber Board | 72 | NS | P404 | | | | 10K1 | 22 MSG Min. | Fiber Board | 72 | 20G@13plf | P514 | | | Gypsum Board | | 20 MSG Min. | . ibei boald | 48 | NS | P519 | | | | 14K1 | 26 MSG Min. | Insulating
Concrete | 66 | NS | P520 | | 3 Hr. | Metal Lath | 10K1 | 28 MSG Min. | Insulating
Concrete | 48 | NS | P405 | ^{*} Special Area Requirements NL = Not Listed NS = Not Specified # **ROOF - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS** | Restrained | Protection | Minimum Joist | | p Roof | Maximum Joist | Minimum
Primary Support | UL Desigr | |---------------------------|------------|---------------|------------------------------|------------------------|---------------|----------------------------|-----------| | Assembly
Rating | Material | Size | Deck Material
Description | Insulation | Spacing (in.) | Member | Number | | 1 Hr. | SAFRM | 10K1 | 22 MSG Min. | Building Units | NS | NS | P822 | | | OAI IIII | 12K3 | 22 MSG Min. | Fiber Board | NS | W8 x 20 | P824 | | 1 Hr.
and
1-1/2 Hr. | SAFRM | 12K5 | 28 MSG Min. | Insulating
Concrete | 96 | W6 x 16 | P919 | | | | | | | | | | | 1-1/2 Hr. | | | | | | | | | and
2 Hr. | SAFRM | 10K1 | 22 MSG Min. | Building Units | NS | W6 x 16 | P728 | | | | | | T . | | | | | | | 14K4 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P701 | | | | 14K4 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P711 | | | | 12K3 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P717 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | 20G@13plf
W8 x 28 | P725 | | | | 10K1 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P726 | | | | 14K4 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P734 | | | | 14K4 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P736 | | 4 U» | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P739 | | 1 Hr., | | 10K1 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P740 | | 1-1/2 Hr.
and | SAFRM | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P743 | | 2 Hr. | | 12K3 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P801 | | | | 10K1 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W6 x 16 | P815 | | | | 10K1 | 22 MSG Min. | Fiber Board | NS | W6 x 16 | P816 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P819 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P825 | | | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P827 | | | | 12K1 | 22 MSG Min. | Fiber Board | NS | 20G@13plf
W8 x 20 | P828 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P902 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | W8 x 10 | P907 | | | | 10K1 | 28 MSG Min. |
Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P908 | (Continued Next Page) # **ROOF - CEILING ASSEMBLIES WITH SPRAY APPLIED FIRE RESISTIVE MATERIALS** | Restrained | Protection | Minimum Joist | Built U | p Roof | Maximum Joist | Minimum | UL Design | |---------------------|------------|---------------|------------------------------|------------------------|---------------|---------------------------|-----------| | Assembly Rating | Material | Size | Deck Material
Description | Insulation | Spacing (in.) | Primary Support
Member | Number | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | W8 x 10 | P920 | | | | 12K5 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P921 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | W6 x 16 | P922 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P923 | | 1 Hr.,
1-1/2 Hr. | SAFRM | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P925 | | and
2 Hr. | SAFRIVI | 12K5 | 28 MSG Min. | Insulating
Concrete | NS | W8 x 10 | P926 | | | | 14K4 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P927 | | | | 12K5 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P928 | | | | 12K3 | 28 MSG Min. | Insulating
Concrete | NS | 20G@13plf
W8 x 10 | P929 | | | | 10K1 | 28 MSG Min. | Insulating
Concrete | NS | W6 x 16 | P936 | | | | | | | | | | | | | 12K3 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P718 | | 2 Hr. | SAFRM | 12K3 | 22 MSG Min. | Foamed Plastic | NS | 20G@13plf
W6 x 16 | P720 | | | | 12K3 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P729 | | | | | | | | | | | 1 Hr., | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | 20G@13plf
W6 x 16 | P719 | | 1-1/2 Hr., | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P722 | | 2 Hr. | SAFRM | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P723 | | and | | 10K1 | 22 MSG Min. | Foamed Plastic | NS | W8 x 28 | P732 | | 3 Hr. | | 10K1*,16K2 | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P733 | | | | 10K1* | 22 MSG Min. | Foamed Plastic | NS | W6 x 16 | P826 | ^{*} Special Area Requirements NS = Not Specified # **NOTES** # Combined K, VS, LH & DLH Series Load Table The following table is an economy guide with the Joists listed in sequence of increasing relative cost. That is, the most economical joist for given length is listed first. The economies were based on production costs and do not include bridging requirements or erection costs. HOW TO USE THE ECONOMICAL JOIST GUIDE: The specifying professional simply turns to the length required and proceeds down the allowable loads column until the first joist type in the list that will carry the required load is found. (However, additional bridging due to erection stability requirements should be taken into consideration.) This will then be the most economical joist type for the combination of length and required load. The approximate weight per foot of the joist is listed to the right of the live load. EXAMPLE: Given 40'-0" length and a required load of 300 plf. On page 126 of the table under 40', it is found that a 30K7 at 40'-0" will carry 319 plf TL. The figures shown in red are the live loads per lineal foot of joist which will produce an approximate deflection of 1/360 of the length. If a deflection limitation of 1/240 is required multiply the figures in red by 1.5. In no case shall the total load capacity of the joist be exceeded. NOTE: Length as used in the economical joist guide means: clear span + 8" for K Series and clear span + 12" for LH and DLH Series joists. You will note that the tables have been shaded to match the load tables. This shading indicates when bolted cross bridging needs to be installed per the Steel Joist Institute specification for a particular joist series. Where the joist span is in the **GREEN SHADED** area of the table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersection. Hoisting cables shall not be released until this row of bolted diagional bridging is completely installed. Where the joist span is in the **BLUE SHADED** area of the table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersection. Hoist cables shall not be released until the two rows of bridging nearest the third points are completely installed. Where the joist span is in the GRAY SHADED area of the table hoisting cables shall not be released until all rows of bridging are completely installed. Total loads shown in the table are allowable total loads in ASD; the loads multiplied by 1.5 are approximately factored total loads in LRFD. | Joist | Allowable
Loads (PLF) | Joist
Weight | |----------------|----------------------------------|-------------------|-----------------|----------------------------------|------------------|-------------------------|----------------------------------|-----------------|-----------------|-----------------------------------|-----------------| | | 10' LENGTH | | 20 | ' LENGTH (Con | t.) | 24 | ' LENGTH (Con | t.) | 26 | ' LENGTH (Co | nt.) | | 10K 1 | 550 550 | 5.0 | 16K2 | 368 297 | 5.5 | 16K2 | 254 170 | 5.5 | 24K6 | 543 493 | 8.9 | | | 11' LENGTH | | 16K3
18K3 | 410 330
463 423 | 6.2
6.5 | 16K3
18K3 | 283 189
320 242 | 6.1 | 24K7
20LH4 | 550 499
574 428 | 9.2 | | 10K 1 | 550 542 | 5.0 | 16K4
16K5 | 493 386
550 426 | 7.0
7.5 | 16K4
20K3 | 340 221
357 302 | 6.9
6.7 | 18LH4
20LH5 | 604 403
616 459 | 12
11 | | | 12' LENGTH | | | 21' LENGTH | | 18K4
20K4 | 385 284
430 353 | 7.2
7.6 | 18LH5
20LH6 | 684 454
822 606 | 13
15 | | 10K 1 | 550 455 | 5.0 | 12K1 | 218 123 | 5.0 | 18K5
18K6 | 434 318
473 345 | 7.7
8.5 | 18LH7
18LH8 | 840 553
876 577 | 16
16 | | | 13' LENGTH | | 14K1
12K3 | 257 170
273 153 | 5.2
5.5 | 20K5
24K6 | 485 396
550 544 | 8.2
7.7 | 20LH7
18LH9 | 878 647
936 616 | 16
17 | | 10K 1 | 479 363 | 5.0 | 14K3
16K2 | 322 212
333 255 | 5.7
5.5 | 18LH3
20LH4 | 562 409
621 503 | 10 | 20LH9
20LH10 | 990 729
1068 786 | 17
18 | | 12K 1 | 550 510 | 5.0 | 16K3
18K3 | 371 285
420 364 | 6.3
6.6 | 18LH4
20LH5 | 655 474
668 540 | 11 | | 27' LENGTH | | | | 14' LENGTH | | 16K4
20K3 | 447 333
468 453 | 7.0
6.7 | 18LH5
18LH6 | 739 534
875 619 | 12
15 | 14K1 | 154 79 | 5.1 | | 10K 1 | 412 289 | 5.0 | 16K5
18K4 | 503 373
506 426 | 7.5
7.2 | 20LH6
18LH7 | 892 713
908 650 | 15
15 | 16K2
16K3 | 200 119
223 132 | 5.5
5.9 | | 14K 1 | 550 550 | 5.2 | 20K4 | 550 520 | 7.6 | 18LH8
20LH7 | 946 679
951 761 | 16
15 | 18K3
16K4 | 252 169
268 155 | 6.3
6.8 | | | 15' LENGTH | | | 22' LENGTH | | 20LH8
18LH9
20LH9 | 980 787
1014 725
1073 857 | 16
17 | 20K3
18K4 | 281 211
303 198 | 6.6
7.0 | | 10K 1
12K 1 | 358 234
434 344 | 5.0
5.0 | 12K1
14K1 | 199 106
234 147 | 5.0
5.1 | 20LH9
20LH10 | 1073 857
1158 924 | 16
17 | 20K4
18K5 | 339 247 342 222 | 7.4
7.7 | | 14K 1
14K 3 | 511 475
550 507 | 5.2
5.9 | 12K3
14K3 | 249 132
293 184 | 5.5
5.6 | | 25' LENGTH | | 22K4
20K5 | 374 301
382 277 | 8.0
8.2 | | | 16' LENGTH | | 16K2
16K3 | 303 222
337 247 | 5.5
6.2 | 14K1 | 180 100 | 5.1 | 20K6
22K5 | 416 301
422 337 | 8.8
8.7 | | 10K 1 | 313 192 | 5.0 | 18K3
16K4 | 382 316
406 289 | 6.5
6.9 | 16K2
16K3 | 234 150
260 167 | 5.5
5.9 | 24K6
26K6 | 503 439
547 519 | 8.6
8.9 | | 12K 1
14K 1 | 380 282
448 390 | 5.0
5.2 | 20K3
18K4 | 426 393
460 370 | 6.7
7.2 | 18K3
16K4 | 294 214 313 195 | 6.3
6.9 | 26K7
20LH4 | 550 522 566 406 | 9.1
11 | | 12K 3
14K 3 | 476 351
550 467 | 5.7
5.9 | 20K4
18K5 | 514 461
518 414 | 7.6
7.7 | 20K3
18K4 | 329 266
355 250 | 6.7
7.1 | 18LH4
20LH5 | 571 367
609 437 | 12
12 | | 1410 | | 0.0 | 22K6
18LH2 | 550 548
554 439 | 7.5
8.8 | 16K6
18K5 | 384 238
400 281 | 8.1
7.7 | 18LH5
20LH6 | 648 414
791 561 | 14
15 | | 4014 | 17' LENGTH | F 0 | 18LH3
18LH4 | 614 488
715 566 | 10
11 | 16K7
18K6 | 428 263 435 305 | 8.6
8.5 | 20LH7
20LH8 | 845 599
873 619 | 16
16 | | 10K 1
12K 1 | 277 159
336 234 | 5.0
5.0 | 18LH5
18LH6 | 808 637
955 738 | 12
14 | 20K5
18K7 | 446 350
485 337 | 8.2
9.0 | 20LH9
20LH10 | 953 675 1028 724 | 17
19 | | 14K 1
12K 3 | 395 324
420 291 | 5.2
5.7 | 18LH7
18LH8 | 992 776 1034 810 | 15
15 | 20K6
16K9 | 486 380
514 311 | 8.9
10 | | 28' LENGTH | | | 16K 2
16K 3 | 512 488
550 526 | 5.5
6.3 | 18LH9 | 1108 864 | 16 | 24K6
20LH4 | 550 520
596 463 | 8.6
10 | 14K1 | 143 70 | 5.1 | | | 18' LENGTH | | | 23' LENGTH | | 18LH4
20LH5 | 628 436
641 497 | 11 | 16K2
16K3 | 186 106
207 118 | 5.5
5.8 | | 10K 1 | 246 134 | 5.0 | 14K1
12K3 | 214 128
227 116 | 5.1
5.5 | 18LH5
20LH6 | 709 492
855 656 | 13
15 | 18K3
16K4 | 234 151 249 138 | 6.2
6.6 | | 12K 1
14K 1 | 299 197
352 272 | 5.0
5.2 | 16K2
16K3 | 277 194
308 216 | 5.5
6.0 | 18LH7
18LH8 | 872 599
908 625 | 16
16 | 20K3
16K5 | 261 189
281 155 | 6.7
7.4 | | 12K 3
14K 3 | 374 245
441 339 | 5.5
5.8 | 18K3
16K4 | 349 276
371 252 | 6.6
7.0 | 20LH7
20LH8 | 912 701
941 724 | 16
16 | 18K4
20K4 | 282 177
315 221 | 7.2
7.5 | | 16K 2
16K 3 | 456 409
508 456 | 5.5
6.3 | 20K3
18K4 | 389 344
420 323 | 6.7
7.2 | 18LH9
20LH9 | 973 667
1030 789 | 17
17 | 18K5
18K6 | 318 199
346 216 | 7.7
8.5 | | 14K 4
14K 6 | 530 397
550 408 | 6.7
6.9 |
20K4
18K5 | 469 402
473 362 | 7.6
7.7 | 20LH10 | 1111 851 | 18 | 20K5
22K5 | 355 248
392 302 | 8.2
8.8 | | | 19' LENGTH | | 22K6
18LH3 | 550 518
587 446 | 7.7
7.7
10 | | 26' LENGTH | | 26K5
24K6 | 466 427 467 393 | 8.1
8.5 | | 10K1 | 221 113 | 5.0 | 18LH4
20LH5 | 684 517
697 589 | 11
11 | 14K1
16K2 | 166 83
216 133 | 5.1
5.5 | 22K7
26K6 | 475 364
508 464 | 9.2
8.9 | | 12K1
14K1 | 268 167
315 230 | 5.0
5.2 | 18LH5
18LH6 | 772 582
913 674 | 13
15 | 16K3
18K3 | 240 148
272 190 | 5.9
6.4 | 28K6
28K7 | 548 541
550 543 | 9.2
9.2 | | 12K3
16K2 | 335 207
408 347 | 5.6
5.5 | 18LH7
20LH8 | 949 709
1024 858 | 15
15
15 | 16K4
20K3 | 289 173
304 236 | 6.8
6.7 | 20LH4
20LH5 | 558 386
602 416 | 12
13 | | 16K3
18K3 | 455 386
514 494 | 6.3
6.6 | 18LH9
20LH9 | 1024 858
1059 790
1121 935 | 16
16 | 18K4
20K4 | 328 222
366 277 | 7.2
7.6 | 18LH5
20LH6 | 614 378
763 521 | 14
15 | | 16K4
16K5 | 547 452
550 455 | 7.0
7.2 | 20LH9
20LH10 | 1209 1008 | 17 | 18K5
22K4 | 369 249
404 338 | 7.7
8.0 | 20LH7
20LH8 | 814 556
842 575 | 16
17 | | | 20' LENGTH | | | 24' LENGTH | | 20K5
20K6 | 412 310
449 337 | 8.2
8.9 | 20LH9
20LH10 | 918 626
991 673 | 18
20 | | 12K 1 | 241 142 | 5.0 | 14K1 | 196 113 | 5.1 | 22K5
26K5 | 455 379
542 535 | 8.8
8.8 | | | | | 14K 1
12K 3 | 284 197
302 177 | 5.0
5.2
5.5 | 12K3 | 208 101 | 5.6 | | | | | | | | 1211 3 | JUL 177 | 5.5 | | | | | | | | | | | Joist | Allowable
Loads (PLF) | Joist
Weight | Joist | Allow
Loads | | Joist | Joist | Allow
Loads | | Joist
Weight | Joist | Allowa
Loads | | Joist
Weight | |----------------|-----------------------------------|-----------------|------------------|----------------|------------|------------|------------------|----------------|------------|-----------------|------------------|-----------------|------------|-----------------| | | 29' LENGTI | н | 31 | ' LENGTH | l (Cor | nt.) | 34 | ' LENGTI | H (Cor | nt.) | 37' | LENGTH | l (Cor | nt.) | | 16K3 | 193 106 | | 24LH7 | 727 | 545 | 15 | 24K9 | 423 | 286 | 10 | 26K5 | 265 | 183 | 7.9 | | 18K3 | 218 136
232 124 | | 24LH8
24LH9 | 776 | 579 | 16 | 28K8 | 456
406 | 364 | 10 | 24K6 | 266 | 169 | 8.3 | | 16K4
20K3 | 243 170 | | 24LH9
24LH10 | 913
965 | 677
718 | 19
20 | 28K9
28K10 | 496
516 | 395
410 | 11
11 | 28K6
26K7 | 312
322 | 232
221 | 8.7
9.1 | | 18K4 | 263 159 | | 24LH11 | 1017 | 752 | 21 | 28LH6 | 552 | 443 | 13 | 28K7 | 348 | 257 | 9.3 | | 20K4 | 293 199 | | | | | | 28LH7 | 624 | 499 | 14 | 30K7 | 373 | 297 | 9.5 | | 18K5
22K4 | 296 179
324 24 2 | | | 32' LEN | GTH | | 28LH8
24LH8 | 668
707 | 533
480 | 15
17 | 28K8
26K9 | 384
387 | 282
262 | 9.9
10 | | 20K5 | 330 223 | | 16K2 | 142 | 71 | 5.5 | 28LH9 | 823 | 656 | 17 | 30K8 | 413 | 325 | 10 | | 22K5 | 365 27 2 | 2 8.7 | 16K3 | 158 | 79 | 5.8 | 24LH9 | 832 | 562 | 20 | 28K9 | 418 | 305 | 11 | | 26K5 | 434 384 | | 18K3 | 178 | 101 | 6.1 | 28LH10 | 900 | 714 | 19 | 30K9 | 449 | 352 | 11 | | 24K6
28K6 | 435 354
511 486 | | 20K4 | 240 | 147 | 7.2 | 28LH11
28LH12 | 965
1060 | 763
835 | 20
23 | 30K10
28LH6 | 474
507 | 374
373 | 12
13 | | 28K7 | 550 522 | | 18K5
20K5 | 242
271 | 132
165 | 7.6
7.9 | 28LH13 | 1105 | 872 | 23 | 24LH6 | 530 | 331 | 15 | | 18LH5 | 581 345 | | 24K4 | 290 | 215 | 8.1 | | | | | 28LH7 | 573 | 421 | 15 | | 20LH5
18LH6 | 595 39 5 648 37 7 | | 22K5 | 299 | 201 | 8.4 | | 35' LEN | GTH | | 24LH7
28LH8 | 588
614 | 367
449 | 16
16 | | 24LH6 | 708 567 | | 22K6
26K5 | 326
356 | 219
285 | 8.4
8.0 | 18K3 | 149 | 77 | 6.1 | 24LH8 | 622 | 388 | 17 | | 24LH7 | 778 62 3 | | 24K6 | 357 | 262 | 8.5 | 20K3 | 166 | 96 | 6.5 | 28LH9 | 755 | 553 | 18 | | 20LH7 | 786 518 | - | 26K6 | 387 | 309 | 8.6 | 18K4 | 179 | 90 | 6.9 | 28LH10 | 826 | 602 | 21 | | 24LH8
24LH9 | 830 662
977 77 5 | | 28K6 | 418 | 361 | 8.9 | 20K4 | 200 | 112 | 7.3 | 28LH11
28LH12 | 886
974 | 643
704 | 21
23 | | 24LH10 | 1033 822 | | 22K9
28K7 | 436
466 | 287
400 | 10
9.5 | 20K6
26K5 | 246
297 | 137
217 | 8.7
7.9 | 28LH13 | 1015 | 735 | 25 | | 24LH11 | 1088 86 | 1 20 | 26K8 | 477 | 375 | 9.9 | 26K6 | 323 | 236 | 8.5 | | | | | | | | | 28K8 | 515 | 433 | 10 | 28K6 | 349 | 275 | 8.7 | | 38' LEN | GTH | | | | 30' LENGTI | Н | 28K9
24LH6 | 549 | 463 | 11 | 26K7 | 360 | 261
305 | 9.0 | 001/0 | 141 | 74 | 6.0 | | 18K3 | 203 123 | 3 6.1 | 24LH6
24LH7 | 641
704 | 465
511 | 14
15 | 28K7
28K8 | 389
430 | 333 | 9.4
9.9 | 20K3
20K4 | 141
170 | 74
87 | 6.3
7.2 | | 16K4 | 216 112 | | 24LH8 | 752 | 543 | 16 | 26K9 | 433 | 310 | 10 | 24K6 | 252 | 156 | 8.3 | | 20K3 | 227 150 | | 24LH9 | 884 | 635 | 19 | 28K9 | 468 | 361 | 11 | 28K6 | 296 | 214 | 8.6 | | 18K4
20K4 | 245 144
274 179 | | 24LH10
24LH11 | 935
985 | 674
705 | 20
20 | 28K10
28LH6 | 501
537 | 389
417 | 11
13 | 26K7
28K7 | 305
329 | 204
237 | 9.0
9.2 | | 18K5 | 276 16 | | 2-11111 | 300 | 700 | 20 | 28LH7 | 606 | 471 | 14 | 30K7 | 354 | 274 | 9.5 | | 20K5 | 308 <mark>20</mark> | | | 33' LEN | GTH | | 28LH8 | 649 | 503 | 15 | 28K8 | 364 | 260 | 9.9 | | 20K6 | 336 218
371 26 6 | | | | | | 24LH8 | 677 | 447 | 17
18 | 26K9 | 367 | 241 | 10 | | 22K6
26K5 | 371 266
405 346 | - | 18K3
20K4 | 168
226 | 92
134 | 6.1
7.3 | 28LH9
28LH10 | 799
874 | 618
673 | 20 | 30K8
28K9 | 391
396 | 300
282 | 10
11 | | 24K6 | 406 319 | | 22K4 | 249 | 164 | 7.3 | 28LH11 | 938 | 719 | 21 | 30K9 | 426 | 325 | 11 | | 26K6 | 441 377 | | 20K5 | 254 | 150 | 8.1 | 28LH12 | 1030 | 787 | 23 | 30K10 | 461 | 353 | 11 | | 28K6
26K7 | 477 43 9 492 417 | | 24K4 | 273 | 196 | 8.3 | 28LH13 | 1073 | 822 | 24 | 28LH6
24LH6 | 494
504 | 354
306 | 13
15 | | 28K7 | 531 486 | - | 20K6
22K5 | 277
281 | 163
183 | 8.7
8.5 | | 36' LEN | GTH | | 28LH7 | 558 | 399 | 15 | | 26K8 | 544 457 | | 26K5 | 334 | 259 | 8.0 | | | <u> </u> | | 24LH7 | 565 | 343 | 16 | | 26K9
20LH5 | 550 459
571 366 | | 24K6 | 335 | 239 | 8.3 | 18K3 | 141 | 70 | 6.1 | 28LH8
28LH9 | 597
735 | 426
524 | 16
19 | | 18LH6 | 605 340 | | 26K6
28K6 | 364
393 | 282
329 | 8.6
8.8 | 20K3
18K4 | 157
169 | 88
82 | 6.4
6.9 | 28LH10 | 804 | 570 | 20 | | 24LH6 | 684 52 9 | 9 14 | 26K7 | 406 | 312 | 9.1 | 20K4 | 189 | 103 | 7.2 | 28LH11 | 863 | 609 | 22 | | 24LH7 | 752 582 | | 28K7 | 438 | 364 | 9.4 | 18K5 | 191 | 92 | 7.5 | 28LH12 | 948 | 667 | 23 | | 24LH8
24LH9 | 802 618
944 72 4 | | 28K8 | 484 | 399 | 10 | 24K6 | 281 | 183 | 8.3 | 28LH13 | 988 | 696 | 26 | | 24LH10 | 998 768 | | 26K9
28K9 | 488
527 | 370
432 | 11
11 | 22K7
24K7 | 286
313 | 169
203 | 8.7
8.8 | | 39' LEN | GTH | | | 24LH11 | 1052 804 | 4 21 | 28K10 | 532 | 435 | 11 | 28K6 | 330 | 252 | 8.8 | | | | | | | 241.1 ENGT | ш | 24LH6 | 621 | 437 | 15 | 26K7 | 340 | 240 | 9.1 | 20K3 | 133 | 69 | 6.4 | | | 31' LENGTI | П | 24LH7
24LH8 | 683
729 | 480
510 | 16
16 | 24K8
28K7 | 346
367 | 222
280 | 9.5
9.4 | 20K4
20K5 | 161
181 | 81
90 | 7.3
7.9 | | 16K4 | 203 10 | 1 6.6 | 24LH9 | 729
857 | 510 | 19 | 26K8 | 367 | 263 | 9.4 | 28K6 | 280 | 198 | 8.6 | | 20K3 | 212 138 | 6.6 | 24LH10 | 906 | 633 | 20 | 30K7 | 395 | 323 | 9.6 | 26K7 | 289 | 188 | 9.0 | | 18K4 | 229 130 | | 24LH11 | 955 | 663 | 22 | 28K9 | 442 | 332 | 11 | 28K7 | 313 | 219 | 9.1 | | 20K4
18K5 | 256 162
258 146 | | | 2/! I EN | CTU. | | 28K10
28LH6 | 487
521 | 366
394 | 12
13 | 30K7
28K8 | 336
346 | 253
240 | 9.5
9.9 | | 22K4 | 283 198 | | | 34' LEN | GIH | | 28LH7 | 589 | 445 | 14 | 26K9 | 348 | 223 | 10 | | 20K5 | 289 182 | 2 8.1 | 18K3 | 158 | 84 | 6.1 | 28LH8 | 631 | 475 | 15 | 30K8 | 371 | 277 | 10 | | 24K4
20K6 | 310 237
314 198 | | 20K3 | 176 | 105 | 6.4 | 24LH8
28LH9 | 649
777 | 416
584 | 17
18 | 28K9
30K9 | 376
404 | 260
300 | 11
11 | | 20K6
22K5 | 319 222 | | 18K4
18K6 | 190
233 | 98
120 | 6.9
8.2 | 28LH10 | 850 | 636 | 19 | 26K10 | 413 | 262 | 12 | | 22K6 | 347 24 | 1 8.3 | 24K4 | 233
257 | 179 | 8.1 | 28LH11 | 911 | 680 | 21 | 30K10 | 449 | 333 | 12 | | 26K5 | 379 314 | | 20K6 | 261 | 149 | 8.6 | 28LH12 | 1001 | 744 | 23 | 32LH7 | 486 | 388 | 13 | | 24K6
22K7 | 380 <u>289</u>
387 <u>267</u> | | 22K5 | 265 | 167 | 8.4 | 28LH13 | 1043 | 777 | 24 | 32LH8
28LH7 | 528
543 | 421
379 | 14
15 | | 28K6 | 446 397 | | 26K5
26K6 | 315
343 | 237
257 | 7.9
8.5 | | 37' LEN | GTH | | 32LH9 | 662 | 526 | 17 | | 22K9 | 465 316 | | 28K6 | 370 | 300 | 8.8 | | U. LLIV | J.11 | | 32LH10 | 732 | 581 | 18 | | 28K8
24LH6 | 550 480
662 498 | | 26K7 | 382 | 285 | 9.1 | 20K3 | 148 | 81 | 6.4 | 32LH11
28LH11 | 802
841 | 635
578 | 20
22 | | 27110 | 002 490 | 14 | 28K7 | 412 | 333 | 9.4 | 20K4 | 179 | 95 | 7.3 | 2021111 | 041 | 570 | | # Combined K, VS, LH & DLH Series Load Table | Joist | Allowa
Loads (| | Joist
Weight | Joist | Allowa
Loads | | Joist
Weight | Joist | Allow
Loads | | Joist
Weight | Joist | Allowa
Loads (| | Joist
Weight | |--|--|--|---------------------------------|--|--|--|----------------------------------|---|--
--|--|--|--|--|--| | 39 | ' LENGTI | l (Co | nt.) | 42 | LENGTH | l (Co | nt.) | | 45' LEN | GTH | | 47 | ' LENGTH | l (Cor | ıt.) | | 32LH12
28LH13
32LH13
32LH14
32LH15 | 941
962
1050
1081
1117 | 742
661
825
850
878 | 23
26
25
26
26 | 28K10
30K10
30K11
32LH7
32LH8
28LH7 | 384
413
417
451
490
505 | 245
282
284
334
362
326 | 12
12
12
14
15 | 24K4
26K5
26K6
28K6
26K7
24K8 | 146
179
194
210
217
220 | 76
101
110
128
122
113 | 7.8
7.9
8.5
8.6
9.0
9.5 | 36LH12
32LH12
36LH13
32LH13
36LH14
36LH15 | 731
780
859
870
947
999 | 541
510
634
566
696
733 | 23
26
26
28
29
30 | | | 40' LEN | GTH | | 28LH8
32LH9 | 540
614 | 348
453 | 16
17 | 28K7
24K10 | 234
285 | 142
144 | 9.2
12 | | 48' LEN | | | | 20K3
20K4
22K4
20K5
24K7 | 127
153
169
172
253 | 64
75
91
84
148 | 6.4
7.2
7.6
7.9
8.9 | 32LH10
32LH11
32LH12
32LH13
32LH14
32LH15 | 679
744
874
974
1003
1037 | 500
547
639
710
732
756 | 19
21
24
26
27
28 | 26K10
28K10
30K10
30K11
36LH8
32LH7 | 310
334
359
389
414
421 | 170
198
229
246
323
291 | 12
12
12
13
13 | 24K4
26K5
26K6
24K7 | 128
157
171
175 | 63
83
90
85 | 7.9
7.8
8.4
8.9 | | 26K7
28K7
30K7
28K8 | 275
297
319
328 | 174
203
234
222 | 9.0
9.1
9.4
9.9 | | 43' LEN | GTH | | 32LH8
36LH9
36LH10
36LH11 | 457
531
584
638 | 315
412
455
495 | 15
16
17
19 | 28K6
24K6
24K10
26K10 | 184
194
250
272 | 105
93
118
140 | 8.6
9.6
12
12 | | 26K9
28K9
30K9
26K10 | 331
357
384
393 | 207
241
278
243
315 | 10
11
11
12 | 22K4
24K4
26K5
30K7 | 146
160
196
276 | 73
88
116
188 | 7.5
8.0
7.9
9.3 | 36LH12
32LH12
36LH13
36LH14 | 763
815
898
990 | 590
556
692
760 | 21
26
25
28 | 28K10
30K10
30K12
36LH8 | 294
315
365
388 | 163
188
216
284 | 12
12
14
14 | | 30K10
32LH7
32LH8
28LH7
32LH9 | 438
474
514
529
645 | 368
400
360
500 | 12
13
14
15
16 | 26K9
30K8
28K9
30K9
26K10 | 286
305
309
332
339 | 166
206
194
223
195 | 10
10
11
11
12 | 36LH15 | 1043
46' LEN | 800 | 29 | 28LH7
32LH8
36LH9
36LH10
36LH11 | 394
428
497
548
598 | 222
277
362
400
435 | 16
16
17
18
20 | | 32LH10
32LH11
32LH12
32LH13
32LH14 | 713
782
918
1024
1054 | 552
604
705
784
807 | 18
20
23
26
26 | 28K10
30K10
30K11
36LH8
32LH7 | 367
394
407
434
441 | 228
263
270
354
318 | 12
12
13
13 | 24K4
26K5
26K6
28K6
26K7 | 139
171
186
201
207 | 71
95
103
120
114 | 7.9
7.9
8.5
8.6
9.1 | 32LH11
36LH12
32LH12
36LH13
36LH14 | 650
715
764
841
927 | 418
518
489
607
667 | 23
23
27
26
29 | | 32LH15 | 1089
41' LEN | 834 | 27 | 32LH8
36LH9
36LH10
36LH11 | 478
555
612
668 | 346
451
499
543 | 15
16
17
18 | 24K8
26K8
26K10
28K10 | 211
229
296
320 | 106
125
159
186 | 9.6
9.7
12
12 | 36LH15
40LH15
40LH16 | 978
1009
1112 | 703
810
890 | 31
31
34 | | 22K4
24K4 | 161
176 | 85
101 | 7.6
8.0 | 32LH11
36LH12 | 727
799 | 522
647 | 21 | 30K10
30K11 | 344
380 | 214
236 | 12
14 | | 49' LEN | GTH | | | 24K7
26K7
24K8
24K9
30K7
26K9 | 241
262
266
290
303
315 | 137
162
150
162
217
192 | 8.9
9.0
9.5
10
9.5 | 32LH12
36LH13
32LH13
36LH14
36LH15 | 853
940
952
1036
1092 | 610
758
678
833
877 | 25
25
27
28
29 | 36LH8
32LH7
28LH7
32LH8
36LH9
36LH10 | 405
412
427
447
519
572 | 309
278
251
302
394
435 | 13
14
16
16
16 | 26K5
26K6
28K6
26K7
28K7
26K8 | 150
164
177
183
197
202 | 78
85
99
94
110 | 7.9
8.4
8.6
9.1
9.3
9.7 | | 28K9
30K9
26K10
30K10 | 340
365
374
427 | 224
258
225
300 | 11
11
12
12 | 22K4
24K4 | 44' LEN 139 153 | 68
82 | 7.5
8.1 | 36LH11
32LH11
36LH12
32LH12 | 624
679
747
797 | 474
455
564
532 | 19
22
23
26 | 30K7
28K8
26K9
30K8 | 212
218
220
234 | 127
120
112
139 | 9.4
9.9
10 | | 32LH7
32LH8
28LH7
32LH9 | 462
502
516
630 | 351
380
342
476 | 13
14
16
17 | 22K5
26K5
26K6
24K7 | 157
187
204
209 | 76
108
118
110 | 8.3
7.9
8.5
8.9 | 36LH13
36LH14
36LH15 | 878
968
1020 | 662
727
765 | 26
28
30 | 30K10
30K11
30K12
28LH7 | 303
347
357
379 | 177
202
207
209 | 12
14
14
16 | | 32LH10
32LH11
28LH11
32LH12 | 696
762
799
895 | 525
574
523
671 | 19
21
23
23 | 28K6
30K8
28K9
30K9 | 220
291
295
317 | 137
192
181
208 | 8.6
10
11
11 | 24K4
26K5 | 133
164 | 67
89 | 7.9
7.9 | 32LH8
36LH9
36LH10
36LH11 | 419
487
536
586 | 266
347
383
417 | 16
17
18
20 | | 32LH13
32LH14
32LH15 | 998
1028
1062 | 746
768
794 | 26
26
28 | 26K10
28K10
30K10
30K11 | 324
350
376
398 | 182
212
245
258 | 12
12
12
13 | 26K6
28K6
24K8
24K10 | 178
192
202
261 | 96
112
99
126 | 8.5
8.6
9.6
12 | 32LH11
36LH12
32LH12
36LH13 | 637
701
748
824 | 401
497
469
583 | 23
24
27
28 | | | 42' LEN | GTH | | 36LH8
32LH7 | 424
431 | 338
304 | 13
14 | 26K10
28K10 | 284
306 | 149
174 | 12
12 | 32LH13
32LH14 | 834
859 | 521
536 | 30
31 | | 22K4
24K7
26K7
24K8
28K7 | 153
229
249
253
269 | 79
127
150
139
175 | 7.6
8.9
9.0
9.6
9.2 | 32LH8
36LH9
36LH10
36LH11
36LH12 | 467
543
598
653
781 | 330
431
476
518
617 | 15
16
17
18
21 | 30K10
36LH7
30K11
36LH8
32LH7 | 329
360
372
396
403 | 201
270
226
296
266 | 12
12
14
13
15 | 36LH14
36LH15
40LH15
40LH16 | 908
958
988
1089 | 640
674
777
854 | 30
31
31
34 | | 26K8
30K7 | 275
289 | 164
202 | 9.7
9.5 | 32LH12
36LH13 | 834
918 | 582
724 | 25
25 | 28LH7
32LH8 | 410
437 | 236
289 | 16
16 | | 50' LEN | GTH | | | 26K9
30K8
28K9
30K9
26K10 | 300
320
324
348
356 | 178
221
208
240
210 | 10
10
11
11
11 | 36LH14
36LH15 | 1012
1067 | 795
837 | 28
29 | 28LH8
36LH9
36LH10
36LH11
32LH11 | 438
508
559
611
664 | 525
377
417
454
436 | 17
17
18
20
22 | 26K5
26K6
26K7
28K7
26K8 | 144
157
175
189
194 | 73
80
89
103
97 | 7.9
8.5
9.1
9.3
9.7 | | Joist | Allowa
Loads | | Joist
Weight | Joist | Allowa
Loads | | Joist
Weight | Joist | Allowa
Loads | | Joist
Weight | Joist | Allow
Loads | | Joist
Weight | |------------------|-----------------|------------|-----------------|------------------|-----------------|------------|-----------------|------------------|-----------------|------------|-----------------|------------------|----------------|------------|-----------------| | 50' | LENGTH | l (Co | nt.) | 52 | LENGTH | l (Coi | nt.) | 55 | LENGT | l (Cor | nt.) | 57 | LENGTH | l (Cor | ıt.) | | 30K7 | 203 | 119 | 9.4 | 32LH11 | 580 | 343 | 23 | 28K7 | 156 | 77 | 9.3 | 48LH11 | 383 | 316 | 15 | | 26K9 | 211 | 105 | 10 | 36LH12 | 660 | 441 | 25 | 30K7 | 168 | 89 | 9.4 | 36LH9 | 418 | 256 | 18 | | 28K9
30K9 | 228
245 | 123
141 | 11
11 | 36LH13
36LH14 | 776
855 | 517
568 | 28
31 | 28K8
30K8 | 173
185 | 85
98 | 9.9
10 | 44LH11
40LH10 | 422
424 | 318
290 | 17
17 | | 26K10 | 250 | 124 | 12 | 36LH15 | 902 | 598 | 33 | 28K9 | 188 | 92 | 11 | 36LH10 | 461 | 283 | 21 | | 28K10 | 270 | 144 | 12 | 40LH15 | 931 | 690 | 31 | 30K9 | 202 | 106 | 11 | 36LH11 | 503 | 308 | 22 | | 30K11 | 333 | 190 | 14 | 40LH16 | 1026 | 758 | 34 | 28K10 | 223 | 108 | 12 | 36LH12 | 602 | 367 | 25 | | 30K12 | 350 | 199 | 14 | | | | | 30K10 | 240 | 125 | 12 | 44LH13 | 619 | 465 | 23 | | 36LH8
32LH8 | 372
411 | 262
255 | 14
16 | | 53' LEN | GTH | | 40LH8
36LH7 | 304
307 | 216
197 | 13
13 | 40LH13
36LH13 | 664
708 | 449
430 | 26
30 | | 36LH9 | 477 | 333 | 17 | 28K6 | 151 | 70 | 8.6 | 30K12 | 312 | 161 | 16 | 32LH14 | 713 | 374 | 33 | | 36LH10 | 526 | 368 | 18 | 28K7 | 151
168 | 78
87 | 9.2 | 44LH9 | 366 | 287 | 15 | 36LH14 | 780 | 472 | 34 | | 36LH11 | 574 | 400 | 21 | 30K7 | 181 | 100 | 9.4 | 36LH9 | 434 | 275 | 18 | 36LH15 | 822 | 497 | 36 | | 32LH11 | 625 | 385 | 23 | 28K8 | 186 | 95 | 9.9 | 40LH10 | 439 | 312 | 17 | 44LH14 | 829 | 619 | 31 | | 36LH12
36LH13 | 687 | 477 | 23 | 28K9 | 203 | 103 | 11 | 36LH10
36LH11 | 477
521 | 304
330 | 20
22 | 40LH15 | 849 | 573
737 | 33 | | 36LH14 | 807
890 |
559
615 | 28
30 | 30K9 | 218 | 119 | 11 | 32LH11 | 521
522 | 292 | 24 | 48LH16
44LH16 | 905
956 | 737
711 | 31
36 | | 36LH15 | 938 | 647 | 32 | 28K10
30K10 | 240
258 | 121
140 | 12
12 | 44LH12 | 541 | 421 | 20 | 44LH17 | 1027 | 761 | 38 | | 40LH15 | 968 | 746 | 31 | 40LH8 | 315 | 233 | 12 | 36LH12 | 624 | 394 | 25 | | | | | | 40LH16 | 1067 | 820 | 34 | 30K12 | 330 | 177 | 16 | 44LH13 | 642 | 499 | 23 | | 58' LEN | GTH | | | | | | | 44LH9 | 380 | 309 | 14 | 36LH13 | 734 | 462 | 29 | | | | | | | 51' LEN | GTH | | 36LH9 | 450 | 296 | 18 | 44LH14 | 739 | 572 | 26
32 | 30K7 | 151 | 76 | 9.4 | | 001/5 | 400 | | | 44LH11 | 454 | 368 | 16 | 36LH14
36LH15 | 809
852 | 507
534 | 34 | 30K8 | 167 | 83 | 10 | | 26K5 | 139 | 69
75 | 7.9 | 32LH9 | 463 | 270 | 19 | 44LH15 | 860 | 665 | 31 | 30K9
30K10 | 181 | 90 | 11 | | 26K6
28K6 | 151
163 | 75
88 | 8.5
8.6 | 36LH10
36LH11 | 496
541 | 327
356 | 19
21 | 40LH15 | 880 | 616 | 33 | 30K10 | 215
247 | 106
121 | 12
14 | | 26K7 | 168 | 83 | 9.1 | 44LH12 | 562 | 454 | 19 | 44LH16 | 991 | 765 | 34 | 40LH8 | 288 | 195 | 13 | | 28K7 | 182 | 97 | 9.3 | 36LH12 | 647 | 424 | 25 | 44LH17 | 1065 | 817 | 36 | 44LH9 | 347 | 258 | 15 | | 26K8 | 186 | 91 | 9.8 | 36LH13 | 761 | 498 | 28 | | | | | 48LH11 | 376 | 305 | 15 | | 26K9 | 203 | 99 | 10 | 44LH14 | 767 | 616 | 26 | | 56' LEN | GTH | | 40LH9 | 378 | 254 | 17 | | 28K9 | 219 | 115 | 11 | 36LH14 | 839 | 547 | 31 | 001/0 | 405 | 00 | 0.0 | 44LH10 | 383 | 284 | 16 | | 30K9
26K10 | 235
241 | 133
116 | 11
12 | 36LH15
44LH15 | 885
892 | 575
716 | 34
31 | 28K6
28K7 | 135
151 | 66
73 | 8.6
9.2 | 32LH9
44LH11 | 391
414 | 208
307 | 19
17 | | 28K10 | 260 | 136 | 12 | 40LH15 | 913 | 664 | 32 | 30K7 | 162 | 73
84 | 9.4 | 40LH10 | 414 | 280 | 18 | | 30K10 | 279 | 157 | 12 | 44LH16 | 1029 | 824 | 34 | 28K8 | 166 | 80 | 9.9 | 36LH10 | 454 | 273 | 21 | | 30K11 | 320 | 179 | 14 | 44LH17 | 1105 | 880 | 37 | 30K8 | 179 | 92 | 10 | 36LH11 | 495 | 297 | 22 | | 30K12 | 343 | 192 | 15 | | | | | 28K9 | 181 | 87 | 11 | 36LH12 | 593 | 354 | 25 | | 28LH7 | 352 | 186 | 16 | | 54' LEN | GTH | | 30K9 | 195 | 100 | 11 | 44LH13 | 609 | 449 | 23 | | 36LH8
32LH8 | 365
397 | 251
242 | 14 | | | | | 28K10
30K10 | 215
231 | 102
118 | 12
12 | 36LH13
44LH14 | 697
701 | 415
514 | 30
28 | | 36LH9 | 397
468 | 320 | 16
17 | 28K6 | 145 | 74 | 8.7 | 30K10 | 265 | 135 | 14 | 36LH14 | 761 | 456 | 35 | | 36LH10 | 515 | 354 | 19 | 28K7
30K7 | 162
174 | 82
94 | 9.2
9.4 | 40LH8 | 298 | 209 | 13 | 36LH15 | 809 | 480 | 36 | | 36LH11 | 563 | 385 | 21 | 28K8 | 179 | 89 | 9.9 | 30K12 | 301 | 153 | 16 | 44LH15 | 815 | 597 | 31 | | 32LH11 | 602 | 363 | 23 | 28K9 | 195 | 97 | 11 | 44LH9 | 359 | 277 | 15 | 48LH16 | 890 | 712 | 31 | | 36LH12 | 673 | 459 | 24 | 30K9 | 209 | 112 | 11 | 36LH9 | 426 | 265 | 18 | 40LH16 | 919 | 608 | 37 | | 36LH13
32LH13 | 791
801 | 538
480 | 28
30 | 28K10 | 232 | 114 | 12 | 44LH11
40LH10 | 429
431 | 329
301 | 17
17 | 44LH16
48LH17 | 940
999 | 687
796 | 37
37 | | 36LH14 | 872 | 591 | 31 | 30K10 | 249 | 132 | 12 | 36LH10 | 469 | 293 | 21 | 44LH17 | 1009 | 734 | 40 | | 36LH15 | 920 | 622 | 33 | 30K11
40LH8 | 285
309 | 150
225 | 14
13 | 40LH11 | 471 | 326 | 19 | 7721117 | 1000 | 704 | 40 | | 40LH15 | 949 | 717 | 31 | 36LH7 | 313 | 204 | 13 | 36LH11 | 512 | 319 | 23 | | 59' LEN | GTH | | | 40LH16 | 1046 | 788 | 33 | 30K12 | 324 | 170 | 16 | 44LH12 | 532 | 406 | 20 | | | | | | | | | | 44LH9 | 373 | 298 | 14 | 36LH12 | 613 | 380 | 25 | 30K7 | 146 | 72 | 9.4 | | | 52' LEN | GTH | | 36LH9 | 442 | 285 | 18 | 44LH13
40LH13 | 631
675 | 482
465 | 23
26 | 30K8 | 161 | 79 | 10 | | 001/5 | 400 | 05 | 7.0 | 44LH11 | 445 | 354 | 16 | 36LH13 | 675
720 | 445 | 30 | 30K9 | 175 | 86 | 11 | | 26K5
26K6 | 133
145 | 65
71 | 7.9
8.4 | 32LH9
36LH10 | 447
486 | 256
315 | 19
19 | 44LH14 | 726 | 552 | 27 | 30K10
40LH8 | 208
283 | 101
188 | 12
13 | | 28K6 | 157 | 83 | 8.6 | 40LH11 | 488 | 350 | 18 | 32LH14 | 738 | 395 | 33 | 48LH10 | 341 | 273 | 14 | | 26K7 | 162 | 79 | 9.1 | 36LH11 | 531 | 343 | 22 | 36LH14 | 794 | 489 | 34 | 44LH10 | 377 | 274 | 16 | | 28K7 | 175 | 92 | 9.3 | 44LH12 | 552 | 437 | 19 | 36LH15 | 837 | 515 | 35 | 32LH9 | 379 | 198 | 19 | | 26K8 | 179 | 86 | 9.7 | 36LH12 | 635 | 409 | 25 | 44LH15 | 844 | 641 | 30 | 44LH11 | 407 | 296 | 17 | | 26K9 | 195 | 93 | 10 | 44LH13 | 654 | 518 | 23 | 40LH15
44LH16 | 864
974 | 594
737 | 33
35 | 36LH10 | 440 | 260 | 20 | | 28K9 | 210 | 109 | 11 | 36LH13
44LH14 | 747 | 479 | 29 | 44LH17 | 1046 | 788 | 37 | 36LH11
36LH12 | 480 | 283 | 23 | | 30K9
26K10 | 226
231 | 126
110 | 11
12 | 36LH14 | 753
824 | 594
527 | 26
32 | | .0.0 | | J. | 36LH12
44LH13 | 575
598 | 338
434 | 25
24 | | 28K10 | 250 | 128 | 12 | 36LH15 | 868 | 554 | 34 | | 57' LEN | GTH | | 36LH13 | 675 | 395 | 30 | | 30K10 | 268 | 148 | 12 | 44LH15 | 876 | 690 | 31 | | | | | 44LH14 | 689 | 497 | 28 | | 28K12 | 325 | 165 | 15 | 40LH15 | 896 | 639 | 33 | 30K7 | 156 | 80 | 9.4 | 36LH14 | 755 | 434 | 35 | | 30K12 | 336 | 184 | 15 | 44LH16 | 1010 | 793 | 34 | 30K8 | 173 | 88 | 10 | 36LH15 | 795 | 464 | 36 | | 28LH7 | 339 | 176 | 16 | 44LH17 | 1084 | 848 | 37 | 30K9 | 188 | 95 | 11 | 44LH15 | 801 | 577
525 | 31 | | 32LH8
36LH9 | 383
459 | 229
308 | 16
18 | | CCL L CA | CTU | | 30K10
30K11 | 223
256 | 112
128 | 12
14 | 40LH15
48LH16 | 820
874 | 535
688 | 34
32 | | 36LH10 | 505 | 340 | 19 | | 55' LEN | GIH | | 40LH8 | 293 | 201 | 13 | 40LH16 | 903 | 588 | 37 | | 36LH11 | 552 | 370 | 21 | 28K6 | 140 | 70 | 8.6 | 48LH10 | 353 | 293 | 15 | 44LH16 | 924 | 664 | 37 | | | | | | | | .,, | 0.0 | | | | | | | | | | Joist | Allowable
Loads (PLF) | Joist
Weight | Joist | Allowable
Loads (PLF) | Joist
Weight | Joist | Allowable
Loads (PLF) | Joist
Weight | Joist | Allowable
Loads (PLF | Joist
) Weight | |--------------------------------------|--|----------------------|------------------------------|--|----------------------|--|--|----------------------|------------------------------|---|-------------------| | 59' | LENGTH (Cor | nt.) | 62' L | ENGTH (C | ont.) | 65' | LENGTH (C | ont.) | 68' L | ENGTH (C | ont.) | | 48LH17
44LH17 | 982 769
992 710 | 37
39 | 48LH16
44LH16
52DLH16 | 832 623
879 601
892 732 | 33
37
34 | 44LH13
40LH13
52DLH13 | 543 357
581 344
614 475 | 26
28
26 | 48LH14
52DLH13
44LH14 | 572 399
587 43
597 379 | 4 27 | | | 60' LENGTH | | 48LH17
44LH17
52DLH17 | 934 696
944 642
1026 835 | 37
41 | 44LH14
52DLH14
44LH15 | 625 409
702 531
727 475 | 29
30
31 | 48LH15
52DLH14
44LH15 | 658 449
671 489
695 43 | 9 32
5 31 | | 30K7
30K8
30K9 | 141 69
156 75
169 81 | 9.4
10
11 | | 3' LENGTH | | 52DLH15
52DLH16
44LH17 | 789 598
851 665
900 584 | 33
34
43 | 52DLH15
48LH16
52DLH16 | 754 54
758 51
813 600 | 6 34
7 36 | | 30K10
30K11
40LH8 | 201 96
231 109
278 182 | 12
14
13 | 40LH8
48LH10
40LH9 | 265 165
319 239
348 215 | 15 | 52DLH17 | 979 759 | 40 | 48LH17
44LH17
52DLH17 | 851 578
860 533
935 694 | 3 41
3 45 | | 48LH10
44LH10
44LH11 | 335 264
370 265
401 287 | 15
16
17 | 44LH10
44LH11
40LH10 | 353 240
381 260 | 17
18 | 40LH8 | 254 150 | 15 | | 9' LENGT | | | 36LH10
40LH11
36LH11
36LH12 | 426 248
439 283
465 269
557 322 | 20
19
23
25 | 36LH10
40LH11
36LH11 | 383 237
389 215
418 257
425 234 | 19
21
21
23 | 48LH10
44LH10
44LH11 | 305 216
337 219
364 237 | 16
17
18 | 40LH8
44LH9
40LH9 | 234 13
291 18
306 17 | 2 17 | | 44LH13
36LH13
44LH14 | 557 322
588 419
654 376
677 480 | 25
25
30
28 | 44LH12
40LH12
44LH13 | 472 321
509 313
560 380 | 22
25 | 40LH10
40LH11
48LH12 | 367 216
399 234
417 295 | 20
22
20 | 44LH10
40LH10
44LH11 | 322 200
338 190
348 210 | 18 20 | | 36LH14
48LH15
36LH15 | 729 412
746 577
781 448 | 34
28
36 | 40LH13
52DLH13
44LH14 | 600 367
634 506
645 435 | 28
26 | 44LH12
40LH12
52DLH12 | 451 292
486 285
498 380 | 23
25
23 | 56DLH11
44LH12
40LH12 | 409 349
431 26
447 25 | 2 21
7 23 | | 44LH15
48LH16
44LH16 | 788 558
860 665
908 642 | 31
32
36 | 52DLH14
44LH15
52DLH15 | 724 565
750 506
814 637 | 29 | 44LH13
52DLH13
44LH14
52DLH14 | 535 346
605 461
615 396
691 515 | 26
26
31
30 | 48LH13
44LH13
52DLH13 | 478 323
511 31
578 42 | 3 24
7 29 | | 48LH17
44LH17 | 965 744
975 686 | 37
39 | 48LH16
44LH16
52DLH16 | 819 603
865 582
878 708 | | 44LH15
40LH15
52DLH15 | 716 461
734 427
777 580 | 31
36
34 | 44LH14
48LH15
52DLH14 | 588 366
648 436
661 47 | 32 | | 40LH8 | 61' LENGTH 274 176 | 13 | 48LH17
44LH17
52DLH17 | 919 674
929 622
1010 809 | 40 | 48LH16
52DLH16
44LH17 | 781 549
838 645
886 566 | 35
37
43 | 44LH15
56DLH15
52DLH15 | 684 42
735 566
743 536 | 32
34 | | 48LH10
44LH10
44LH11 | 330 256
364 257
394 277 | 15
16
17 | 6 | 64' LENGTH | ı | 52DLH17 | 964 736
7' LENGTH | 40 | 48LH16
52DLH16
48LH17 | 747 502
801 590
839 563 | 38
2 41 | | 40LH10
36LH10
40LH11 | 396 253
413 236
432 274 | 18
21
21 | 40LH8
48LH10
40LH9 | 261 160
314 232
342 209 | 15
18 |
40LH8
44LH9 | 247 144
300 193 | 15
16 | 44LH17
52DLH17 | 848 518
922 674 | 44 | | 36LH11
44LH12
40LH12 | 451 257
488 342
526 334 | 23
21
25 | 44LH10
44LH11
40LH10 | 347 233
375 252
377 230 | 18 | 40LH9
44LH10 | 323 188
332 212 | 18
18 | 40LH8 | 228 12 | | | 44LH13
40LH13
48LH14 | 579 405
620 391
638 487 | 25
28
26 | 36LH10
40LH11
48LH12 | 378 206
412 249
430 314 | 21
21 | 44LH11
56DLH11
44LH12 | 359 230
422 363
444 283 | 18
20
23 | 40LH9
44LH10
40LH10 | 298 160
317 199
329 180 | 5 18
5 18 | | 44LH14
48LH15
44LH15 | 666 464
734 558
775 540 | 28
29
31 | 44LH12
36LH12
44LH13 | 465 311
493 267
551 368 | 22
25 | 36LH12
40LH12
52DLH12
44LH13 | 450 232
472 273
491 369
527 336 | 25
25
23
26 | 44LH11
36LH11
40LH11 | 343 210
348 173
358 196 | 20
3 23 | | 40LH15
48LH16
44LH16 | 793 500
846 643
893 621 | 36
33
37 | 40LH13
52DLH13
44LH14 | 591 355
625 490
635 422 | 28
26 | 48LH14
52DLH13
44LH14 | 581 404
596 447
606 385 | 27
27
27
30 | 56DLH11
44LH12
40LH12 | 403 333
425 259
435 24 | 2 21
9 24 | | 48LH17
44LH17 | 949 719
959 664 | 37
39 | 52DLH14
44LH15
52DLH15 | 713 547
738 490
801 617 | 31
32 | 40LH14
48LH15
52DLH14 | 638 367
668 462
681 499 | 34
31
31 | 52DLH12
48LH13
44LH13 | 469 33
471 31
504 30 | 3 24
7 27 | | | 62' LENGTH | | 48LH16
52DLH16
48LH17 | 806 584
864 686
905 653 | 35 | 44LH15
40LH15
52DLH15 | 705 447
712 408
765 563 | 31
36
34 | 48LH14
52DLH13
44LH14 | 556 37 0 570 409 580 35 0 | 9 29 | | 40LH8
48LH10
44LH10 | 269 170
324 247
358 248 | 14
15
17 | 44LH17
52DLH17 | 914 602
994 783 | | 48LH16
52DLH16
48LH17 | 770 533
825 626
864 596 | 35
37
40 | 48LH15
52DLH14
44LH15 | 639 423
652 45
675 409 | 7 31 | | 44LH11
40LH10
36LH10 | 388 268
389 245
401 225 | 18
19
21 | 40LH8 | 257 155 | | 44LH17
52DLH17 | 873 549
950 715 | 44
40 | 52DLH15
48LH16
52DLH16 | 732 513
736 486
789 573 | 36
3 37 | | 40LH11
36LH11
44LH12
40LH12 | 425 265
438 246
480 331
517 323 | 21
23
21
25 | 48LH10
44LH10
44LH11 | 309 225
342 226
370 244 | 15
17 | 40LH8 | 241 138 | 15 | 48LH17
44LH17
56DLH17 | 827 540
835 503
901 700 | 3 45
0 40 | | 44LH13
40LH13
48LH14 | 569 392
610 379
628 472 | 25
25
29
26 | 40LH10
40LH11
48LH12 | 371 223
405 241
424 305 | 19
21
20 | 44LH9
40LH9
44LH10 | 296 187
315 180
327 206 | 17
18
18 | 52DLH17 | 909 654 | | | 44LH14
52DLH14
44LH15 | 655 450
736 584
762 522 | 29
29
31 | 44LH12
36LH12
40LH12 | 458 301
478 255
493 294 | 25 | 56DLH11
44LH12
40LH12 | 415 352
437 275
459 261 | 20
23
25 | 40LH8
44LH9 | 222 123
283 173 | 2 17 | | 52DLH15 | 827 658 | 32 | 52DLH12 | 506 392 | 22 | 44LH13 | 519 326 | 26 | 40LH9 | 291 16 | 18 | | 71' LENGTH (Cont.) 74' LENGTH 44LH10 313 189 18 40LH8 206 108 15 60DLH17 823 63 44LH11 338 204 20 44LH9 272 158 18 52DLH17 837 55 60DLH11 398 323 21 44LH10 300 174 19 44LH12 419 252 24 56DLH11 381 297 21 40LH12 424 231 25 44LH12 402 232 25 | 28 47
32 41
55 45
14 47 | 79' LE 48LH16 60DLH16 56DLH16 52DLH16 48LH17 64DLH17 | 652 383
689 514
693 482
699 450 | 40
38 | |--|----------------------------------|---|--|----------------------------| | 40LH10 321 176 20 40LH9 269 141 18 60DLH17 823 63 44LH11 338 204 20 44LH9 272 158 18 52DLH17 837 55 40LH11 349 190 22 40LH10 297 156 20 60DLH18 950 71 56DLH11 398 323 21 44LH10 300 174 19 44LH12 419 252 24 56DLH11 381 297 21 | 32 41
55 45
14 47 | 60DLH16
56DLH16
52DLH16
48LH17 | 689 514 693 482 | | | | 27 40 | 60DLH17 | 732 428
788 622
792 585 | 38
41
45
41
44 | | 52DLH12 463 328 24 52DLH12 444 302 24 40LH8 192 9 48LH13 464 305 26 48LH13 445 280 25 44LH9 253 14 | 41 18 | 52DLH17
60DLH18 | 805 513
914 660 | 48
47 | | 40LH13 500 271 30 48LH14 525 331 29 48LH11 283 17 52DLH13 562 398 28 52DLH13 539 366 29 44LH11 302 16 | <mark>72</mark> 18 | 80 | ' LENGTH | | | 44LH14 572 342 31 44LH14 549 315 31 44LH12 374 20 52DLH14 642 444 31 52DLH14 616 409 32 52DLH11 382 25 44LH15 665 398 31 44LH15 639 366 31 52DLH12 427 27 52DLH15 722 501 35 60DLH15 669 525 32 48LH13 428 25 | 56 24
79 26 | 40LH8
40LH9
44LH9
40LH10 | 178 86
233 113
236 127
255 124 | 15
18
18
20 | | 52DLH16 778 557 37 52DLH15 692 461 37 44LH13 444 24 48LH17 815 530 41 52DLH16 747 513 38 52DLH13 518 33 44LH17 782 489 45 48LH17 782 486 45 40LH15 538 26 | 46 28
38 30
68 36 | 44LH10
48LH11
44LH11 | 260 139
272 160
282 151 | 19
18
21 | | 52DLH17 896 636 44 60DLH17 846 667 40 52DLH14 592 37 60DLH18 1017 818 46 60DLH18 976 753 46 60DLH15 643 48 | 78 34
26 31 | 52DLH10
44LH12
52DLH11
52DLH12 | 335 217
347 185
368 237
410 258 | 22
25
24
26 | | 72' LENGTH 75' LENGTH 75' LENGTH 36LH7 196 95 15 | 25 38
41 36 | 48LH13
44LH13
48LH14 | 410 258
412 240
413 220
486 283 | 26
26
29
32 | | 36LH8 215 104 16 40LH8 201 104 15 52DLH16 717 47 40LH8 217 117 16 44LH9 265 152 18 48LH17 751 45 44LH9 279 167 17 40LH10 290 150 20 52DLH17 826 54 | 73 40
50 45
40 46 | 52DLH13
60DLH14
56DLH14 | 498 313
527 380
555 374 | 31
30
32 | | 40LH9 283 153 18 44LH10 293 168 19 60DLH18 938 69 44LH10 308 184 18 56DLH11 376 289 21 21 24LH12 393 224 25 25 78' LENGT 44LH11 333 199 19 48LH13 439 273 25 | | 52DLH14
52DLH15
64DLH16
60DLH16 | 570 350
640 394
675 533
680 501 | 35
38
35
38 | | 56DLH11 392 314 20 44LH13 466 265 28 40LH8 187 9 44LH12 413 245 25 48LH14 518 322 29 44LH9 247 13 52DLH12 456 319 24 56DLH13 532 356 29 44LH10 272 15 | | 56DLH16
52DLH16
48LH17 | 684 470
690 438
723 417 | 38
41
47 | | 48LH13 458 296 26 44LH14 534 302 31 48LH11 279 16 44LH13 490 291 29 52DLH14 608 398 33 44LH11 295 16 52DLH13 554 387 28 44LH15 623 352 31 44LH12 365 20 44LH14 564 333 31 60DLH15 660 511 32 52DLH11 377 24 | 62 21
00 25 | 60DLH17
52DLH17
60DLH18 | 782 570
795 500
903 644 | 44
48
48 | | 52DLH14 633 432 31 52DLH15 683 449 37 52DLH12 421 27 44LH15 656 387 31 48LH16 687 425 39 48LH13 422 25 52DLH15 712 487 35 60DLH16 726 571 35 44LH13 433 23 | 72 26
52 26 | 81 44LH9 | ' LENGTH 231 122 | 18 | | 48LH16 716 461 38 52DLH16 737 499 40 52DLH13 511 32 52DLH16 767 542 38 48LH17 771 475 45 40LH15 524 25 44LH17 812 475 45 44LH17 780 438 47 56DLH14 569 39 | 29 30
58 36 | 44LH10
48LH11
44LH11 | 254 134
269 156
276 146 | 19
18
21 | | 52DLH17 883 618 44 60DLH17 834 649 40 52DLH14 585 36 60DLH18 1003 796 46 52DLH17 848 570 45 52DLH15 657 41 60DLH18 963 733 47 | 15 38
93 40 | 52DLH10
44LH12
48LH12 | 331 211
339 179
340 196 | 22
25
23 | | 73' LENGTH 76' LENGTH 60DLH16 698 52 56DLH16 702 49 52DLH16 708 46 54LH9 275 162 17 40LH8 196 100 15 48LH17 742 43 | 95 38
61 41 | 52DLH11
52DLH12
48LH13 | 363 231
405 252
407 234 | 23
26
27 | | 44LH9 275 162 17 40LH8 196 100 15 48LH17 742 43 40LH9 276 147 18 44LH9 259 146 17 52DLH17 815 52 44LH10 304 179 18 40LH10 283 144 20 60DLH18 926 67 40LH10 305 162 20 44LH10 286 162 19 | 2 6 45 | 48LH14
52DLH13
56DLH14
52DLH14 | 480 276
492 305
548 365
563 341 | 32
31
32
35 | | 44LH11 329 193 19 48LH11 287 177 18 79' LENGT 56DLH11 387 305 20 44LH11 310 175 21 44LH12 407 238 25 52DLH10 353 240 21 40LH8 183 9 | TH
90 15 | 52DLH15
64DLH16
60DLH16 | 632 384
667 520
672 489 | 38
36
38 | | 52DLH12 450 311 24 44LH12 383 215 25 44LH9 242 13
48LH13 451 288 26 52DLH11 387 263 23 44LH10 266 14
44LH13 483 283 29 52DLH12 432 286 26 48LH11 276 16 | 31 18
44 19 | 52DLH16
48LH17
64DLH17 | 682 428
714 407
769 592 | 42
47
41 | | 52DLH13 546 376 28 48LH13 433 266 26 44LH11 289 15
44LH14 556 324 31 44LH13 454 254 28 52DLH10 339 22
52DLH14 625 420 32 48LH14 511 313 30 44LH12 356 19
44LH15 647 376 31 52DLH13 525 347 30 52DLH11 372 24 | 22 22
92 25 | 52DLH17
64DLH18
60DLH18
68DLH19 | 785 488
888 669
891 628
998 803 | 48
47
53
52 | | 44LH15 647 376 31 52DLH13 525 347 30 52DLH11 372 24
52DLH15 702 474 37 52DLH14 600 388 34 52DLH12 416 26
48LH16 706 448 37 44LH15 608 339 31 48LH13 417 24
52DLH16 757 527 38 60DLH15 652 497 32 44LH13 423 22 | 65 26
46 26 | | LENGTH | JE | | 44LH17 801 462 47 52DLH15 674 437 37 52DLH13 505 32 52DLH17 871 601 44 60DLH16 716 556 36 56DLH14 562 38 60DLH18 989 774 46 52DLH16 727 486 40 52DLH14 577 35 48LH17 761 462 45 52DLH15 648 40 | 21 30
84 31
59 34 | 44LH9
44LH10
44LH11
44LH12 | 226 118
249 130
269 140
331 172 | 18
19
21
25 | | SZ LENGTH (CONL) | Joist | Allowable
Loads (PLF) | Joist
Weight | Joist | Allow
Loads | | Joist
Weight | Joist | | wable
s (PLF) | Joist
Weight | Joist | | wable
s (PLF) | Joist
Weight |
--|---|---|--|--|---|---|--|--|---|---|--|---|--|--|--| | SECULITY 240 246 27 37 38 38 38 38 38 38 3 | 82' | LENGTH (C | ont.) | 84' | LENGTH | l (Cont | t.) | 87' | LENGT | H (Coı | nt.) | 89' | LENGT | H (Cor | nt.) | | ### ABLH13 | | | | 68DLH19 | 962 | 746 | 54 | | | | | _ | | | | | Main | | | | | 95' I EN | СТН | | | | | | | | | | | SOLDHI 514 392 31 44LH 32 11 101 18 18 18 18 20 20 20 20 20 20 20 2 | | | | | 05 LEIV | ч | | | | | | | | | | | BODLHIS 686 433 38 644HI 222 217 21 540DHIS 687 377 38 50DHIS 687 387 39 50DHIS 688 313 31 540DHIS 310 3 | | | | - | | | | | | | | | | | | | SEQUHIS 604 427 38 500HIS 51 512 25 50DHIS 52 55 50DHIS 624 375 39 32 | | | | | | | | | | | | | | | | | SEDULH1 | | | | 44LH12 | 308 | 155 | 25 | | | | | | 90' LEN | IGTH | | | SODUHIS 664 477 93 SCHING 664 477 93 SCHING 664 475 907 47 SCHING 673 475 444 481H17 706 374 47 SCHING 476 476 476 476 476 476 476 476 476 476 | 52DLH15 | 624 375 | 39 | - | | | | 56DLH15 | 583 | 357 | 38 | 4011140 | 000 | 400 | 40 | | SEQUENT Fig. SEQUENT | - | | | | | | | | | | | | | | | | SOUTH 775 476 48 | | | | | | | | | | | | 52DLH10 | 298 | 171 | 24 | | SODLHIS 877 893 48 44LH15 488 243 31 SODLHI7 779 482 48 SODLHI2 365 201 29 SODLHI9 986 783 52 SODLHIS 510 278 36 SODLHIS 880 613 53 SODLHI7 726 423 52 SODLHI3 444 389 206 33 SODLHI7 726 423 52 SODLHI3 483 265 31 SODLHIS 807 613 46 SODLHI3 482 262 32 SODLHI3 483 265 31 SODLHIS 807 613 46 SODLHI3 482 262 32 SODLHIS 807 613 46 SODLHI3 482 263 31 SODLHIS 807 613 46 81 | | | | | | | | | | | - | | | | | | 83' LENGTH 44LH9 221 114 18 65 310 37 600LH15 502 397 34 660DLH16 502 397 398 600DLH16 502 397 34 660DLH16 502 397 398 60DLH16 60DLH17 736 505 45 45 45 50DLH12 396 240 27 560DLH17 736 505 45 660DLH17 736 505 64 64DLH16 502 302 397 398 60DLH18 899 570 53 50DLH11 398 297 398 60DLH16 603 407 40 660DLH16 502 398 60DLH16 603 407 40 660DLH16 502 398 391 72 660DLH16 603 407 40 660DLH16 502 302 302 503 302 37 660DLH16 503 302 37 660DLH16 503 303 303 50DLH16 503 302 37 660DLH16 302 50DLH13 302 50DLH13 302 302 50DLH13 302 302 50DL | | | | 44LH15 | 488 | 243 | 31 | | | | | | | | | | 83' LENGTH 83' LENGTH 600LH15 596 374 38 600LH19 929 696 54 58 600LH14 607 373 34 600LH14 607 373 34 600LH14 607 373 34 600LH15 596 374 38 600LH15 596 374 38 600LH15 596 374 38 600LH19 929 696 54 78 600LH14 607 385 42 78 600LH15 596 385 478 44LH11 264 136 21 31 64 220 31 65 60LH15 600 385 478 44LH11 264 136 21 31 600LH15 600 385 478 44LH11 267 227 32 800LH17 766 56 56 600LH13 473 311 30 600LH15 846 607 47 520LH13 473 311 30 50LH13 846 607 47 520LH13 473 311 30 50LH13 846 607 47 520LH13 847 311 30 50LH14 598 325 35 60DLH14 608 325 35 60DLH14 608 325 35 60DLH14 608 325 35 60DLH14 608 325 35 60DLH15 608 383 47 860LH15 48 860LH15 608 48 860LH15 608 | 60DLH18 | 880 613 | | | | | | | 725 | | 48 | _ | | | | | ## ALLHON COLUMN SEE SEE 397 34 6 650LH18 582 397 34 6 650LH18 582 397 38 39 597 39 39 597 39 3 | 68DLH19 | 986 783 | 52 | | | | | | | | | | | | | | SOLIHIS SALINING | | 83' I ENGT | | | | | | | | | - | | | 247 | 34 | | ### ALH-19 | | 05 ELIVATI | • | | | | | 68DLH19 | 929 | 696 | 54 | | | | | | 44HH1 264 136 21 48HH7 690 564 38 44HH9 138 96 18 500 421 39 44HH9 225 550LH17 745 745 545 520LH13 365 240 27 520LH17 745 745 444 464 44HH1 246 203 24 27 545 520LH13 366 240 27 520LH18 846 607 47 520LH13 366 240 27 340LH18 846 607 47 520LH13 360 361 32 360LH19 951 729 54 520LH14 373 311 30 680LH19 951 729 54 520LH14 373 213 27 54 520LH15 565 365
365 36 | | | | 56DLH16 | 644 | 416 | 41 | | 0011 =1 | | | | | | | | ### ### ### ### ### ### ### ### ### ## | | | | - | | | _ | | 88. TEV | IGIH | | | | | | | ABLH12 329 185 24 520LH117 736 505 45 44LH10 218 106 19 520LH16 614 346 455 520LH17 748 447 466 44LH11 236 235 340 44LH16 236 241 27 27 28 28 600LH13 467 332 28 600LH13 467 332 28 600LH13 467 332 28 600LH13 460 291 32 520LH16 361 30 520LH17 37 37 37 37 37 37 37 | | | | | | | | 44I H9 | 198 | 96 | 18 | | | | | | September Sept | | | | | | | | 44LH10 | 218 | 106 | 19 | 52DLH16 | 614 | 346 | 45 | | 60DLH14 436 223 31 60DLH18 846 607 47 60DLH15 347 331 30 68DLH19 951 729 54 68DLH19 32 52DLH13 473 311 30 68DLH19 951 729 54 68DLH19 32 53 55 64 47 34 44LH1 228 113 19 60DLH15 665 407 44 44LH1 227 123 21 52DLH19 459 229 45 52DLH10 312 187 24 68DLH19 32 | | | | | | | | | | | | | | | | | SeDLH13 | | | | - | | | | | | | | | | | | | Sepon Sepo | | | | | | | | | | | | | | | | | Boll-114 508 353 30 | | | | 00DLH19 | 951 | 729 | 54 | | | | | | | | | | SEDILHI | | | | | 86' I FN | GTH | | | | | | | | | | | SODLH15 S96 417 34 44LH9 207 103 18 44LH15 596 345 314 32 32 32 34 44LH10 228 113 91 60DLH14 479 314 32 32 32 34 44LH11 247 123 21 32 22 32 34 44LH11 247 123 21 248 34 34 44LH11 248 34 34 34 34 34 34 34 | | | | | OU LLIV | <u> </u> | | | | | | | | | | | GODLH16 661 666 666 668 38 44 44 44 41 11 247 123 21 52 21 42 44 44 44 41 11 247 123 21 52 21 44 44 44 44 44 44 4 | | | | - | | | _ | | | | | | 91' LEN | IGTH | | | AU AU AU AU AU AU AU AU | | | | | | | | 60DLH14 | 479 | 314 | 32 | 4011140 | | | | | SEDLH17 Fig. Fig. Fig. SEDLH10 S12 187 24 SEDLH17 T54 529 45 SEDLH11 S22 25 25 SEDLH17 T766 465 48 SEDLH112 382 223 27 SEDLH118 S66 637 48 44LH14 406 200 31 SEDLH16 627 362 45 SEDLH12 357 197 29 SEDLH19 S76 S76 SEDLH19 S76 S77 S78 S77 | | | | | | | | | | | | | | | | | SZDLH17 | 48LH17 | 690 383 | 47 | | | | | | | | | _ | | | | | Add | | | | | | | | | | | | | | | | | SEDLH19 974 765 54 55 54 55 54 55 54 55 54 55 54 55 54 56 54 55 55 54 55 | | | | | | | | | | | | | | | | | 84' LENGTH 84' LENGTH 44LH9 216 110 18 500 115 575 388 36 600LH15 575 388 36 600LH18 77 22 413 52 500LH14 497 266 38 400LH16 520 488 37 640LH16 520 488 37 640LH16 626 488 37 640LH16 626 488 37 640LH16 633 434 40 40 520LH13 350 215 25 500LH16 633 434 40 40 520LH13 350 215 25 500LH16 632 407 41 414 425 215 31 500LH16 632 407 41 414 425 215 31 500LH16 632 435 500LH17 727 493 455 520LH13 475 284 32 500LH17 739 463 484 520 215 25 500LH17 739 463 484 520 215 500LH17 739 463 485 520LH13 475 284 32 560LH17 739 463 485 520LH10 301 175 23 520LH18 500 252 31 680LH18 816 627 46 600LH14 502 345 311 600LH18 839 557 53 520LH19 940 712 54 560DLH15 589 407 34 560DLH15 589 407 34 560DLH15 589 407 34 560DLH16 638 383 38 680DLH18 816 627 46 680DLH18 839 557 53 520LH19 448 455 397 444 41H10 223 110 19 400DLH15 560 362 345 31 680DLH18 839 557 53 520LH13 475 284 485 539 520LH19 940 712 54 560DLH15 589 407 34 560DLH16 638 33 38 680DLH18 816 627 46 48LH17 675 371 47 44LH10 223 110 19 50DLH15 589 307 44 44LH10 223 110 19 50DLH15 589 307 44 44LH10 223 110 19 50DLH16 638 33 344 44H10 223 310 19 225 50DLH13 330 340 35 52DLH13 330 350 350 52DLH15 556 362 37 52DLH15 556 362 37 52DLH19 350 52DLH15 52DL | | | | | | | | 72DLH17 | | 526 | | _ | | | | | 84' LENGTH 48H15 499 269 36 52DLH14 530 302 37 72DLH18 780 594 47 64DLH14 460 313 32 36 52DLH14 50DLH15 575 388 36 66DLH15 575 388 36 66DLH15 575 388 36 66DLH18 770 599 48 60DLH14 460 313 32 44LH11 258 131 21 66DLH15 595 341 41 770LH18 780 594 47 66DLH14 460 313 32 44LH11 258 131 21 68DLH16 626 488 37 72DLH19 915 674 54 64DLH14 480 293 34 48LH12 315 160 25 46DLH16 636 407 41 48LH19 918 680 56 60DLH15 544 37 48LH11 320 179 24 | 68DLH19 | 9/4 /65 | 54 | - | | | | | | | | | | | | | ## ALH9 | | | | 48LH15 | | | | | | | - | | | | | | 44LH9 216 110 18 44LH10 238 121 19 44LH11 258 131 21 44LH11 258 131 21 68DLH16 626 488 37 64DLH16 626 488 37 64DLH16 628 461 38 60DLH16 633 434 40 55DLH11 350 215 25 5DLH16 642 379 45 5DLH11 350 215 25 5DLH16 642 379 45 5DLH11 350 215 25 5DLH16 642 379 45 5DLH11 360 215 25 5DLH16 642 379 45 5DLH11 360 215 25 5DLH16 642 379 45 5DLH11 360 215 25 5DLH16 642 379 45 5DLH17 682 551 38 5DDLH17 727 493 453 5DLH17 733 463 48 5DLH11 300 191 26 5DLH18 839 557 63 5DLH14 543 317 37 60DLH15 589 407 34 6DDLH15 589 407 34 6DDLH15 589 407 34 6DDLH15 589 407 34 6DDLH16 657 397 44 4LH9 202 99 18 6DDLH16 667 397 44 4LH9 223 110 19 6DDLH16 657 397 44 4LH10 223 110 19 6DDLH17 745 517 45 517 45 5DLH10 233 114 25 5DLH11 667 431 38 6DDLH17 751 485 46 6DLH17 757 454 45 55 5DLH10 308 183 24 6DDLH16 667 397 44 4LH11 242 119 21 6DDLH16 607 431 38 6DDLH17 757 454 454 55 5DLH10 308 183 24 6DDLH17 757 454 454 55 5DLH10 308 183 24 6DDLH17 757 454 454 55 5DLH11 338 200 26 6DDLH17 703 460 46 6DDLH17 703 460 46 6DDLH17 703 463 44 25 5DLH11 338 300 26 6DDLH17 703 463 44 300 308 183 24 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 454 55 5DLH10 308 183 24 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 110 19 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 110 19 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 454 55 5DDLH10 308 183 24 5DDLH16 607 431 38 6DDLH16 6DDLH17 757 454 44LH10 223 110 19 6DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 144 25 5DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 144 25 5DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 140 42 140 45 44LH10 223 140 44LH10 223 140 42 5DDLH16 607 431 38 6DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 140 44LH10 223 140 425 5DDLH16 607 431 38 6DDLH17 757 454 44LH10 223 144 25 5DDLH17 757 454 44LH10 223 140 44LH10 223 140 44LH10 223 | | 84' LENGTH | 1 | | | | | | | | | | | | | | 44LH10 238 121 19 44LH11 258 131 21 48LH116 626 488 37 44LH11 258 131 21 48LH12 315 160 25 52DLH16 633 434 40 52DLH16 636 407 41 52DLH17 350 215 25 52DLH16 642 379 45 52DLH11 350 215 25 48LH17 646 346 47 44LH14 425 215 31 52DLH17 632 551 38 52DLH13 467 304 30 52DLH16 636 48 45 52DLH16 500LH17 727 493 45 52DLH11 500LH17 727 493 45 52DLH11 500 252 31 52DLH17 739 433 52 52DLH14 543 317 37 52DLH18 816 627 46 68DLH18 839 557 53 68DLH18 87 LENGTH 87 LENGTH 89 LENGTH 89 LENGTH 64DLH15 527 368 35 64DLH15 527 368 35 64DLH16 598 387 42 52DLH16 598 387 42 52DLH11 320 11 12 18 72DLH17 687 440 46 67 52DLH17 733 463 48 52DLH11 330 191 26 67DLH18 771 560 48 68DLH18 816 627 46 68DLH18 816 627 46 68DLH18 819 557 53 68DLH19 940 712 54 52DLH14 543 317 37 66DLH15 559 407 34 55DLH16 648 455 39 52DLH16 657 397 44 44LH9 202 99 18 68DLH18 550 362 37 65DLH16 657 397 44 44LH10 223 110 19 66DLH15 556 362 37 65DLH16 657 397 44 44LH10 223 110 19 66DLH15 575 318 41 52DLH11 320 110 20 52DLH11 320 110 20 52DLH11 320 31 38 44LH11 242 119 21 52DLH15 575 318 41 52DLH11 313 174 26 65DLH17 775 454 52 52DLH10 308 183 24 72DLH16 620 354 455 65DLH12 352 200 9 27 52DLH11 330 91 20 52DLH11 313 174 26 65DLH17 757 454 52 52DLH10 308 183 24 72DLH16 620 354 455 65DLH12 352 200 9 27 52DLH11 333 91 32 200 26 66DLH17 757 454 52 52DLH10 308 183 24 72DLH17 659 514 41 41 48LH14 333 193 32 26 6DDLH17 757 454 52 52DLH10 308 183 24 72DLH17 659 514 41 41 41 333 193 32 26 6DDLH17 757 454 52 52DLH10 308 183 24 72DLH17 659 514 41 41 41 333 193 32 26 6DDLH17 757 454 52 52DLH10 308 183 24 72DLH17 659 514 41 41 41 333 193 32 26 6DDLH18 866 622 48 52DLH11 338 200 26 66DLH17 779 462 60DLH17 779 462 60DLH17 779 462 60DLH17 779 462 60DLH17 779 460 46 | 1/I HQ | 216 110 | 18 | | | | | | | | | | | | | | 44LH11 258 131 21 44LH12 315 160 25 25 466 28 461 38 60DLH16 628 461 38 60DLH16 633 434 40 56DLH12 391 234 27 48LH17 646 346 47 72DLH17 682 551 38 60DLH13 467 304 30 52DLH13 52DLH13 52DLH13 52DLH14 500 252 31 60DLH14 502 345 31 48LH15 500 252 31 68DLH18 52DLH16 648 455 39 60DLH15 589 407 34 56DLH15 589 407 34 56DLH15 589 407 34 56DLH15 589 407 34 56DLH16 667 397 44 44LH10 223 110 19 56DLH17 735 436 48LH17 675 371 47 60DLH17 675 371 47 60DLH17 737 438 60DLH17 738 438 60DLH16 667 431 38 60DLH16 667 397 44 44LH10 223 110 19 56DLH17 751 485 46 52DLH11 338 200 26 60DLH17 703 460 46 60DLH13 319 32 26 20DLH17 757 454 52 26 48 44 407 212 28 38 64 48 411 242 119 21 56DLH17 757 454 52 52DLH10 308 183 24 52DLH17 703 460 46 60DLH13 412 270 30 30 30 30 30 30 30 | | | | | | | | | | | | 64DLH15 | 527 | 368 | 35 | | ## ## ## ## ## ## ## ## ## ## ## ## ## | | | 21 | | | | | 68DLH19 | 918 | 680 | 56 | | | | | | 48LH12 322 179 24 52DLH16 636 407 41 52DLH16 642 379 45 52DLH12 391 234 27 48LH17 646 346 47 425 215 31 55DLH17 682 551 38 52DLH13 475 284 32 52DLH17 733 463 48 52DLH14 502 345 31 60DLH17 733 463 48 52DLH14 502 345 31 60DLH17 739 433 52 52DLH16 657 397 44 56DLH15 684 455
39 52DLH16 657 397 44 66DLH17 745 517 45 517 45 517 751 485 46 60DLH17 757 454 52 52DLH10 223 110 19 60DLH16 657 397 45 44LH11 242 119 21 55DLH16 667 431 38 66 622 48 52DLH11 338 200 26 60DLH17 703 460 46 42 379 45 55DLH12 369 209 28 64DLH16 667 431 38 64DLH17 757 454 552 52DLH10 388 852 52DLH16 662 354 45 56DLH17 757 454 552 52DLH10 388 852 20DLH17 757 454 552 52DLH10 388 852 20DLH17 757 454 552 52DLH10 388 852 20DLH17 758 454 552 52DLH17 757 454 552 52DLH16 662 354 455 56DLH17 758 454 552 56DLH17 758 454 552 56DLH17 758 454 552 56DLH17 758 454 552 56DLH17 758 | 44LH12 | | 0.5 | 104DLH 10 | 0∠8 | | | | | | | | 503 | | | | 52DLH11 391 234 27 44LH14 425 215 31 56DLH13 467 304 30 52DLH13 467 304 30 52DLH14 425 215 31 60DLH15 58DLH17 732 493 45 52DLH16 500 252 31 60DLH17 733 463 48 48LH15 521 287 36 60DLH18 816 627 46 48LH15 521 287 36 60DLH18 839 557 53 60DLH14 474 307 32 60DLH15 589 407 34 52DLH16 648 455 39 52DLH16 657 397 44 48LH10 223 110 19 60DLH17 745 517 45 48LH11 242 119 21 52DLH16 657 371 47 48LH10 223 110 19 60DLH15 | 52DLH10 | | | 60DLH16 | 633 | | | | 001151 | IOTIL | | | | | 72 | | 44LH14 425 215 31 56DLH13 467 304 30 52DLH13 475 284 32 44LH15 500 252 31 66DLH17 739 433 45 52DLH17 739 433 52 68DLH18 816 627 46 60DLH14 502 345 317 60DLH15 521 287 36 60DLH18 839 557 53 66DLH19 940 712 54 87' LENGTH 88' LENGTH 87' LENGTH 87' LENGTH 60DLH15 575 371 45 60DLH16 627 397 44 44LH10 223 110 19 60DLH17 757 455 17 45 60DLH17 757 454 52 52DLH10 301 175 23 64DLH16 667 397 44 44LH10 223 110 19 66DLH16 611 405 40 66DLH16 620 354 45 52DLH17 757 454 52 52DLH10 308 183 24 66DLH16 620 354 45 66DLH17 757 454 52 52DLH10 308 183 24 66DLH16 620 354 45 66DLH17 757 454 52 66DLH17 757 454 52 66DLH17 757 454 52 66DLH18 856 622 48 66DLH19 308 183 24 66DLH17 765 514 45 52DLH10 308 183 24 66DLH17 703 460 46 66DLH17 703 460 46 66DLH17 703 460 46 66DLH17 703 460 46 66DLH13 38 193 32 66DLH17 703 460 46 66DLH13 38 193 32 66DLH17 703 460 46 66DLH13 412 270 30 | 48LH12 | 319 196
322 179 | 23
24 | 60DLH16
56DLH16 | 633
636 | 407 | 41 | | 89' LEN | IGTH | | 60DLH16
52DLH16 | 598
601 | 387
335 | 45 | | 58DLH13 475 284 32 52DLH13 475 284 32 44LH15 500 252 31 60DLH14 502 345 31 68DLH18 816 627 46 60DLH14 521 287 36 52DLH14 543 317 37 60DLH15 589 407 34 56DLH16 648 455 39 52DLH16 657 397 44 48LH17 675 371 47 48LH10 223 110 19 60DLH17 745 517 45 60DLH17 751 485 46 757 454 44LH11 242 119 21 64DLH18 856 622 48 60DLH17 745 45 44LH11 242 119 21 60DLH16 657 397 44 44LH10 223 <td>48LH12
52DLH11</td> <td>319 196
322 179
350 215</td> <td>23
24
25</td> <td>60DLH16
56DLH16
52DLH16</td> <td>633
636
642</td> <td>407
379</td> <td>41
45</td> <td>48LH10</td> <td></td> <td></td> <td>18</td> <td>60DLH16
52DLH16
60DLH17</td> <td>598
601
687</td> <td>387
335
440</td> <td>45
46</td> | 48LH12
52DLH11 | 319 196
322 179
350 215 | 23
24
25 | 60DLH16
56DLH16
52DLH16 | 633
636
642 | 407
379 | 41
45 | 48LH10 | | | 18 | 60DLH16
52DLH16
60DLH17 | 598
601
687 | 387
335
440 | 45
46 | | SZDLH13 475 284 32 44LH15 500 252 31 60DLH14 502 345 31 48LH15 521 287 36 52DLH14 543 317 37 60DLH15 589 407 34 66DLH16 648 455 39 52DLH16 657 397 44 48LH17 675 371 47 48LH10 223 110 19 60DLH17 751 485 46 44LH12 293 144 25 52DLH17 757 454 52DLH10 308 183 24 60DLH17 757 454 52 52DLH10 308 183 24 52DLH17 757 454 52 52DLH10 308 183 24 52DLH17 757 454 52 52DLH10 308 183 24 52DL | 48LH12
52DLH11
52DLH12 | 319 196
322 179
350 215
391 234 | 23
24
25
27 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17 | 633
636
642
646
682 | 407
379
346
551 | 41
45
47
38 | 48LH11 | 212
229 | 112
120 | 20 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18 | 598
601
687
754
771 | 387
335
440
555
560 | 45
46
46
48 | | 60DLH14 502 345 31 48LH15 521 287 36 50DLH18 839 557 53 52DLH14 543 317 37 60DLH15 589 407 34 56DLH16 648 455 39 52DLH16 657 397 44 44LH10 223 110 19 60DLH15 556 362 37 52DLH16 657 371 47 60DLH17 745 517 45 66DLH17 751 485 46 60DLH17 757 454 52 52DLH10 308 183 24 52DLH18 856 622 48 52DLH11 338 200 26 60DLH17 703 460 46 60DLH13 412 270 30 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13 | 319 196
322 179
350 215
391 234
425 215
467 304 | 23
24
25
27
31
30 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17 | 633
636
642
646
682
727 | 407
379
346
551
493 | 41
45
47
38
45 | 48LH11
52DLH10 | 212
229
301 | 112
120
175 | 20
23 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
60DLH18 | 598
601
687
754
771
793 | 387
335
440
555
560
497 | 45
46
46
48
53 | | #\$EDLH14 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13 | 319 196
322 179
350 215
391 234
425 215
467 304
475 284 | 23
24
25
27
31
30
32 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17 | 633
636
642
646
682
727
733
739 | 407
379
346
551
493
463
433 | 41
45
47
38
45
48
52 | 48LH11
52DLH10
52DLH11 | 212
229
301
330 | 112
120
175
191 | 20
23
26 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
60DLH18
72DLH19 | 598
601
687
754
771
793
885 | 387
335
440
555
560
497
630 | 45
46
46
48
53
54 | | 852DLH14 543 317 37 60DLH15 589 407 34 56DLH15 604 383 38 60DLH16 648 455 39 52DLH16 657 397 44 48LH17 675 371 47 44LH10 223 110 19 60DLH16 611 405 40 48LH11 242 119 21 52DLH16 611 405 40 48LH11 242 119 21 52DLH16 620 354 45 52DLH17 751 485 46 44LH12 293 144 25 52DLH17 757 454 52 52DLH10 308 183 24 52DLH18 856 622 48 52DLH10 308 183 24 64DLH18 856 622 48 52DLH10 308 183 24 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14 | 319 196
322 179
350 215
391 234
425 215
467 304
475 284
500 252
502 345 | 23
24
25
27
31
30
32
31 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18 | 633
636
642
646
682
727
733
739
816 | 407
379
346
551
493
463
433
627 | 41
45
47
38
45
48
52
46 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14 | 212
229
301
330
369
407 | 112
120
175
191
209
212 | 20
23
26
28
32 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
60DLH18
72DLH19 | 598
601
687
754
771
793
885 | 387
335
440
555
560
497
630 | 45
46
46
48
53
54 | | 87' LENGTH 64DLH15 648 64DLH16 648 648 455 39 44 48LH17 675 675 371 47 44LH9 202 60DLH16 600 60DLH17 745 517 45 44LH10 223 410 223 411 216 411 216 42 44LH10 431 38 44LH11 242 44LH11 242 44LH11 242 44LH11 242 44LH11 243 44LH11 244 44LH11 244 44LH11 244 44LH11 244 44LH11 244 44LH11 244 44LH11 245 44LH11 246 44LH11 247 44LH11 247 44LH11 244 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15 | 319 196
322 179
350 215
391 234
425 215
467 304
475 284
500 252
502 345
521 287 | 23
24
25
27
31
30
32
31
31
36 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18 | 633
636
642
646
682
727
733
739
816
839 | 407
379
346
551
493
463
433
627
557 | 41
45
47
38
45
48
52
46
53 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13 | 212
229
301
330
369
407
448 | 112
120
175
191
209
212
253 | 20
23
26
28
32
33 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
60DLH18
72DLH19
68DLH19 | 598
601
687
754
771
793
885
888 | 387
335
440
555
560
497
630
636 | 45
46
46
48
53
54 | | 60DLH16 648 455 39 52DLH16 657 397 44 48LH17 675 371 47 60DLH17 745 517 45 60DLH17 751 485 46 44LH11 242 119 21 56DLH17 757 454 52 52DLH10 308 183 24 64DLH18 856 622 48 52DLH10 308 183 24 52DLH11 338 200 26 64DLH17 703 460 46 65DLH17 703 460 46 66DLH17 703 460 46 66DLH17 703 460 46 66DLH18 856 622 48 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14 | 319 196
322 179
350 215
391 234
425 215
467 304
475 284
500 252
502 345
521 287
543 317 | 23
24
25
27
31
30
32
31
31
36
37 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18 | 633
636
642
646
682
727
733
739
816
839 | 407
379
346
551
493
463
433
627
557 | 41
45
47
38
45
48
52
46
53 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14 | 212
229
301
330
369
407
448
474
512 | 112
120
175
191
209
212
253
307
282 | 20
23
26
28
32
33
32
38 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
60DLH18
72DLH19
68DLH19 | 598
601
687
754
771
793
885
888 | 387
335
440
555
560
497
630
636 | 45
46
46
48
53
54
55 | | 48LH17 675 371 47 44LH10 223 110 19 64DLH16 607 431 38 60DLH17 745 517 45 44LH11 242 119 21 56DLH17 751 485 46 44LH12 293 144 25 52DLH16 620 354 45 52DLH17 757 454 52 52DLH10 308 183 24 64DLH18 856 622 48 52DLH11 338 200 26 66DLH17 703 460 46 60DLH13 412 270 30 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH15 | 319 196
322 179
350 215
391 234
425 215
467 304
475 284
500 252
502
345
521 287
543 317
589 407
604 383 | 23
24
25
27
31
30
32
31
31
36
37
34 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18 | 633
636
642
646
682
727
733
739
816
839
940 | 407
379
346
551
493
463
433
627
557
712 | 41
45
47
38
45
48
52
46
53 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14
64DLH15 | 212
229
301
330
369
407
448
474
512
539 | 112
120
175
191
209
212
253
307
282
385 | 20
23
26
28
32
33
32
38
34 | 60DLH16
52DLH16
60DLH17
70DLH18
67DLH18
67DLH18
72DLH19
68DLH19 | 598
601
687
754
771
793
885
888
92' LEN
200
216 | 387
335
440
555
560
497
630
636
IGTH 102
110 | 45
46
46
48
53
54
55 | | 60DLH17 745 517 45 44LH11 242 119 21 60DLH16 611 405 40 52DLH12 349 191 29 56DLH17 751 485 46 44LH12 293 144 25 52DLH16 620 354 45 52DLH16 659 514 41 66DLH18 856 622 48 52DLH11 338 200 26 60DLH17 703 460 46 60DLH17 703 460 46 60DLH13 412 270 30 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH15
60DLH16 | 319 196 322 179 350 215 391 234 425 215 467 304 475 284 500 252 502 345 521 287 543 317 589 407 604 383 648 455 | 23
24
25
27
31
30
32
31
31
36
37
34
38
39 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18
68DLH19 | 633
636
642
646
682
727
733
739
816
839
940 | 407
379
346
551
493
463
433
627
557
712 | 41
45
47
38
45
48
52
46
53
54 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14
64DLH15
60DLH15 | 212
229
301
330
369
407
448
474
512
539
556 | 112
120
175
191
209
212
253
307
282
385
362 | 20
23
26
28
32
33
32
38
34
37 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
67DLH19
68DLH19
48LH10
48LH10
48LH11
52DLH10 | 598
601
687
754
771
793
885
888
92' LEN
200
216
285 | 387
335
440
555
560
497
630
636
IGTH 102
110
159 | 45
46
46
48
53
54
55 | | 52DLH17 757 454 52 52DLH10 308 183 24 52DLH11 338 200 26 60DLH17 703 460 46 60DLH13 412 270 30 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH15
60DLH16
52DLH16 | 319 196 322 179 350 215 391 234 425 215 467 304 475 284 500 252 502 345 521 287 543 317 589 407 604 383 648 455 657 397 | 23
24
25
27
31
30
32
31
31
36
37
34
38
39 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18
60DLH19 | 633
636
642
646
682
727
733
739
816
839
940 | 407
379
346
551
493
463
433
627
557
712
GTH | 41
45
47
38
45
48
52
46
53
54 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14
64DLH15
52DLH15
64DLH15 | 212
229
301
330
369
407
448
474
512
539
556
575
607 | 112
120
175
191
209
212
253
307
282
385
362
318
431 | 20
23
26
28
32
33
32
38
34
37
41
38 | 60DLH16
52DLH16
60DLH17
72DLH18
60DLH18
72DLH19
68DLH19
48LH10
48LH10
48LH10
52DLH10
52DLH11 | 598
601
687
754
771
793
885
888
92' LEN
200
216
285
313 | 387
335
440
555
560
497
630
636
IGTH
102
110
159
174 | 45
46
46
48
53
54
55 | | 64DLH18 856 622 48 52DLH11 338 200 26 60DLH17 703 460 46 60DLH13 412 270 30 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH16
52DLH16
48LH17
60DLH16 | 319 196 322 179 350 215 391 234 425 215 467 304 475 284 500 252 502 345 521 287 543 317 589 407 604 383 648 455 657 397 675 371 745 517 | 23
24
25
27
31
30
32
31
36
37
34
38
39
44
47
45 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
56DLH18
60DLH18
60DLH18
68DLH19 | 633
636
642
646
682
727
733
739
816
839
940
87' LEN
202
223
242 | 407
379
346
551
493
463
433
627
557
712
GTH 99 110 119 | 41
45
47
38
45
48
52
46
53
54 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14
64DLH15
60DLH15
52DLH15
64DLH16
64DLH16 | 212
229
301
330
369
407
448
474
512
539
556
575
607
611 | 112
120
175
191
209
212
253
307
282
385
362
318
431
405 | 20
23
26
28
32
33
32
38
34
37
41
38
40 | 60DLH16
52DLH16
60DLH17
72DLH18
60DLH19
68DLH19
68DLH19
48LH10
48LH10
48LH11
52DLH10
52DLH11
48LH13
52DLH12 | 598
601
687
754
771
793
885
888
92' LEN
200
216
285
313
325
349 | 387
335
440
555
560
497
630
636
IGTH 102
110
159
174
164
191 | 45
46
46
48
53
54
55
18
20
24
26
29
29 | | 60DLH18 859 584 53 52DLH12 377 218 27 56DLH17 708 432 49 52DLH13 424 231 33 | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH16
52DLH16
52DLH16
52DLH16
52DLH17
60DLH17 | 319 196 322 179 350 215 391 234 425 215 467 304 475 284 500 252 502 345 521 287 543 317 589 407 604 383 648 455 657 397 675 371 745 517 751 485 | 23
24
25
27
31
30
32
31
36
37
34
38
39
44
47
45
46 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
56DLH18
60DLH18
60DLH18
68DLH19
44LH9
44LH10
44LH11
44LH11 | 633
636
642
646
682
727
733
739
816
839
940
87' LEN
202
223
242
293 | 407
379
346
551
493
463
433
627
557
712
GTH 99 110 119 144 | 41
45
47
38
45
48
52
46
53
54
18
19
21
25 | 48LH11
52DLH10
52DLH11
52DLH12
52DLH12
52DLH13
60DLH14
52DLH14
64DLH15
60DLH15
52DLH15
64DLH16
64DLH16
52DLH16 | 212
229
301
330
369
407
448
474
512
539
556
575
607
611
620 | 112
120
175
191
209
212
253
307
282
385
362
318
431
405
354 | 20
23
26
28
32
33
32
38
34
37
41
38
40
45 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
67DLH19
68DLH19
48LH10
48LH11
52DLH10
52DLH11
52DLH11
52DLH11
52DLH12
56DLH12 | 598
601
687
754
771
793
885
888
92' LEN
200
216
285
313
325
349
352 | 387
335
440
555
560
497
630
636
IGTH
102
110
159
174
164
191
209 | 45
46
46
48
53
54
55
18
20
24
26
29
29
27 | | | 48LH12
52DLH11
52DLH12
44LH14
56DLH13
52DLH13
44LH15
60DLH14
48LH15
52DLH14
60DLH15
56DLH16
52DLH16
48LH17
60DLH17
56DLH17
56DLH17
56DLH17
56DLH17
56DLH17 | 319 196 322 179 350 215 391 234 425 215 467 304 475 284 500 252 502 345 521 287 543 317 589 407 604 383 648 455 657 397 675 371 745 517 751 485 757 454 856 622 | 23
24
25
27
31
30
32
31
31
36
37
34
38
39
44
47
45
46
52
48 | 60DLH16
56DLH16
52DLH16
48LH17
72DLH17
60DLH17
56DLH17
52DLH17
68DLH18
60DLH18
68DLH19
44LH10
44LH10
44LH10
52DLH110
52DLH110 | 633
636
642
646
682
727
733
739
816
839
940
87' LEN
202
223
242
293
308
338 | 407
379
346
551
493
463
433
627
557
712
GTH
99
110
119
144
183
200 | 41
45
47
38
45
48
52
46
53
54
18
19
21
25
24
26 | 48LH11
52DLH10
52DLH11
52DLH12
48LH14
52DLH13
60DLH14
52DLH14
64DLH15
60DLH15
52DLH15
64DLH16
64DLH16
652DLH16
72DLH17 | 212
229
301
330
369
407
448
474
512
539
556
575
607
611
620
659
703 | 112
120
175
191
209
212
253
307
282
385
362
318
431
405
354
514
460 | 20
23
26
28
32
33
32
38
34
37
41
38
40
45
41
46 | 60DLH16
52DLH16
60DLH17
72DLH18
67DLH18
67DLH19
68DLH19
48LH10
48LH11
52DLH10
52DLH11
48LH13
52DLH12
48LH14 | 598
601
687
754
771
793
885
888
92' LEN
200
216
285
313
325
349
352
383 | 387
335
440
555
560
497
630
636
IGTH 102
110
159
174
164
191
209
193 | 45
46
46
48
53
54
55
18
20
24
26
29
29
27
32 | | Joist | | vable
s (PLF) | Joist
Weight | Joist | | wable
s (PLF) | Joist
Weight | Joist
Type | | wable
Is (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Live | Joist
Weight
(lbs./ft.) | |--------------------|------------|------------------
-----------------|--------------------|------------|------------------|-----------------|--------------------|------------|---------------------------|-------------------------------|--------------------|------------|---------------------------|-------------------------------| | 92' | LENGT | H (Co | nt.) | | 95' LEN | IGTH | | 97' | LENGT | H (Cor | nt.) | 100' | LENGT | ТН (Со | nt.) | | 56DLH13
48LH15 | 427 | 253 | 32 | 48LH10 | 188 | 93 | 18 | 64DLH15 | 494 | 324 | 37 | 52DLH13 | 358 | 180 | 33 | | 60DLH14 | 439
458 | 221
287 | 36
34 | 48LH11
52DLH10 | 204
267 | 100
145 | 20
23 | 60DLH15
72DLH16 | 510
537 | 305
380 | 40
38 | 60DLH13
56DLH13 | 379
386 | 228
209 | 32
33 | | 52DLH14 | 486 | 258 | 38 | 52DLH11 | 293 | 158 | 26 | 64DLH16 | 557 | 362 | 42 | 52DLH14 | 413 | 201 | 37 | | 64DLH15 | 521
538 | 360
339 | 35
38 | 52DLH12
56DLH12 | 327
341 | 173 | 29
27 | 60DLH16
72DLH17 | 561
604 | 341
433 | 44
42 | 60DLH14 | 421
435 | 243
234 | 35
38 | | 60DLH15
52DLH15 | 545 | 291 | 36
42 | 48LH14 | 360 | 196
176 | 32 | 64DLH17 | 641 | 433
412 | 42 | 56DLH14
64DLH15 | 435 | 304 | 37 | | 56DLH15 | 551 | 319 | 41 | 52DLH13 | 397 | 209 | 33 | 56DLH17 | 650 | 363 | 51 | 60DLH15 | 495 | 287 | 41 | | 60DLH16 | 591 | 379 | 42 | 60DLH13 | 399 | 253 | 31 | 72DLH18 | 708 | 488 | 48 | 72DLH16 | 521 | 358 | 39 | | 56DLH16
60DLH17 | 595
680 | 355
431 | 45
46 | 48LH15
60DLH14 | 413
444 | 201
269 | 36
34 | 64DLH18
60DLH18 | 741
744 | 466
437 | 53
59 | 60DLH16
72DLH17 | 544
586 | 320
407 | 45
44 | | 72DLH18 | 746 | 543 | 46 | 52DLH14 | 457 | 234 | 37 | 72DLH19 | 830 | 554 | 55 | 64DLH17 | 622 | 388 | 49 | | 68DLH18 | 763 | 548 | 48 | 56DLH14 | 467 | 265 | 37 | 68DLH19 | 833 | 559 | 60 | 72DLH18 | 686 | 459 | 48 | | 60DLH18
68DLH19 | 784
878 | 486
622 | 53
55 | 68DLH15
60DLH15 | 477
521 | 340
318 | 34
38 | | 0011 EN | ICTLL | | 64DLH18
60DLH18 | 718
721 | 438
411 | 55
59 | | CODEITIO | 0/0 | OLL | | 56DLH15 | 533 | 299 | 41 | | 98' LEN | NGIH | | 72DLH19 | 805 | 521 | 58 | | | 93' LEN | IGTH | | 68DLH16 | 566 | 400 | 38 | 52DLH10 | 251 | 132 | 24 | 68DLH19 | 808 | 526 | 61 | | 4011140 | 100 | 00 | 40 | 64DLH16
60DLH16 | 568
573 | 378
355 | 41
44 | 52DLH11 | 275 | 144 | 26 | | 101' LEI | NCTU | | | 48LH10
48LH11 | 196
212 | 99
106 | 18
20 | 56DLH16 | 576 | 333 | 45 | 52DLH12
60DLH12 | 307
318 | 158
197 | 29
27 | | IOI LEI | NGIH | | | 52DLH10 | 279 | 154 | 23 | 72DLH17 | 617 | 451 | 42 | 56DLH12 | 331 | 184 | 30 | 52DLH10 | 236 | 120 | 23 | | 52DLH11 | 306 | 169 | 26 | 60DLH17
56DLH17 | 658
663 | 404
379 | 48
51 | 52DLH13 | 373 | 191 | 33 | 52DLH11 | 259 | 132 | 26 | | 48LH13
52DLH12 | 318
342 | 159
185 | 29
29 | 72DLH18 | 723 | 509 | 48 | 60DLH13
56DLH13 | 387
401 | 238
223 | 32
34 | 56DLH12
60DLH12 | 289
309 | 144
185 | 29
27 | | 56DLH12 | 349 | 204 | 27 | 60DLH18 | 760 | 456 | 56 | 60DLH14 | 430 | 253 | 34 | 56DLH12 | 312 | 168 | 29 | | 48LH14 | 375 | 187 | 32 | 72DLH19
68DLH19 | 847
850 | 578
583 | 55
60 | 56DLH14 | 453 | 249 | 38 | 52DLH13 | 351 | 174 | 33 | | 52DLH13
48LH15 | 414
430 | 224
214 | 33
36 | OODLITIS | 650 | 303 | 00 | 64DLH15
60DLH15 | 489
505 | 317
298 | 37
40 | 60DLH13
56DLH13 | 375
379 | 224
204 | 32
33 | | 60DLH14 | 453 | 281 | 34 | | 96' LEN | IGTH | | 72DLH16 | 531 | 373 | 39 | 52DLH14 | 405 | 194 | 37 | | 52DLH14 | 476 | 249 | 38 | | | | | 64DLH16 | 551 | 355 | 42 | 60DLH14 | 417 | 238 | 35 | | 56DLH14 | 477
532 | 277
332 | 37
38 | 48LH10
48LH11 | 185 | 90
91 | 18 | 60DLH16
56DLH16 | 555
550 | 334
313 | 44 | 56DLH14 | 427
449 | 228
301 | 37
35 | | 60DLH15
52DLH15 | 532
533 | 282 | 36
42 | 52DLH10 | 200
261 | 140 | 20
24 | 72DLH17 | 559
598 | 424 | 46
43 | 68DLH15
64DLH15 | 449
475 | 298 | 39 | | 56DLH15 | 545 | 312 | 41 | 52DLH11 | 287 | 153 | 26 | 64DLH17 | 635 | 404 | 46 | 60DLH15 | 490 | 281 | 41 | | 68DLH16 | 578 | 417 | 38 | 48LH13 | 300 | 145 | 29 | 56DLH17 | 643 | 356 | 51 | 60DLH16 | 538 | 314 | 46 | | 60DLH16
56DLH16 | 585
588 | 371
348 | 42
45 | 52DLH12
60DLH12 | 320
325 | 168
205 | 29
27 | 72DLH18
64DLH18 | 700
733 | 478
456 | 48
53 | 72DLH17
64DLH17 | 580
616 | 399
380 | 44
49 | | 64DLH17 | 669 | 448 | 46 | 56DLH12 | 338 | 192 | 29 | 60DLH18 | 736 | 428 | 59 | 60DLH17 | 619 | 357 | 52 | | 60DLH17 | 672 | 421 | 49 | 48LH14 | 353 | 171 | 32 | 72DLH19 | 821 | 543 | 55 | 72DLH18 | 679 | 450 | 51 | | 56DLH17
68DLH18 | 678
754 | 395
536 | 51
48 | 52DLH13
60DLH13 | 389
395 | 203
248 | 33
32 | 68DLH19 | 824 | 548 | 60 | 64DLH18
60DLH18 | 711
714 | 430
403 | 56
59 | | 64DLH18 | 773 | 507 | 53 | 48LH15 | 405 | 195 | 36 | | 99' LEN | IGTH | | 72DLH19 | 797 | 511 | 60 | | 60DLH18 | 776 | 476 | 56 | 64DLH14 | 436 | 281 | 32 | | <u> </u> | | | 68DLH19 | 800 | 516 | 61 | | 68DLH19 | 869 | 609 | 54 | 60DLH14
52DLH14 | 439
447 | 264
227 | 34
38 | 52DLH10 | 246 | 128 | 24 | | 100115 | NOTH | | | | 94' LEN | IGTH | | 56DLH14 | 462 | 260 | 38 | 52DLH11
52DLH12 | 270
301 | 140
153 | 26
29 | | 102' LEI | NGIH | | | | OT LEIV | | | 60DLH15 | 515 | 311 | 38 | 60DLH12 | 315 | 193 | 27 | 52DLH10 | 231 | 116 | 23 | | 48LH10 | 192 | 96 | 18 | 48LH17
64DLH16 | 525
562 | 252
370 | 47
41 | 56DLH12 | 324 | 178 | 29 | 52DLH11 | 254 | 128 | 26 | | 48LH11
52DLH10 | 208
273 | 103
150 | 20
23 | 60DLH16 | 567 | 348 | 44 | 52DLH13
60DLH13 | 366
383 | 185
233 | 33
33 | 52DLH12
56DLH12 | 284
306 | 140
163 | 29
29 | | 52DLH11 | 299 | 164 | 26 | 56DLH16 | 570 | 326 | 45 | 56DLH13 | 394 | 216 | 33 | 52DLH13 | 344 | 170 | 33 | | 48LH13 | 312 | 154 | 29 | 72DLH17
64DLH17 | 610
648 | 442
421 | 42
46 | 60DLH14 | 426 | 248 | 34 | 64DLH13 | 358 | 232 | 31 | | 52DLH12
56DLH12 | 334
345 | 179
200 | 29
27 | 60DLH17 | 651 | 395 | 49 | 56DLH14
64DLH15 | 444
484 | 242
311 | 38
37 | 60DLH13
52DLH14 | 372
397 | 219
189 | 34
37 | | 48LH14 | 367 | 181 | 32 | 56DLH17 | 656 | 371 | 51 | 60DLH15 | 500 | 292 | 40 | 60DLH14 | 413 | 233 | 35 | | 52DLH13 | 406 | 216 | 33 | 72DLH18
64DLH18 | 715
748 | 499
476 | 48
53 | 64DLH16 | 545 | 348 | 42 | 56DLH14 | 419 | 221 | 38 | | 48LH15
60DLH14 | 422
448 | 208
275 | 36
34 | 60DLH18 | 748
752 | 476
447 | 53
57 | 60DLH16
72DLH17 | 549
592 | 327
415 | 44
43 | 68DLH15
64DLH15 | 445
470 | 295
292 | 35
39 | | 52DLH14 | 448 | 242 | 37 | 72DLH19 | 838 | 566 | 55 | 64DLH17 | 628 | 395 | 43 | 60DLH15 | 470 | 292
275 | 39
41 | | 52DLH14 | 472 | 271 | 37 | 68DLH19 | 841 | 571 | 60 | 56DLH17 | 630 | 345 | 51 | 60DLH16 | 533 | 308 | 46 | | 60DLH15 | 526
530 | 325 | 38 | | 97' LEN | ICTU | | 72DLH18 | 693 | 469
447 | 48 | 72DLH17 | 574
610 | 391 | 45
40 | | 56DLH15
68DLH16 | 539
572 | 306
408 | 41
38 | | 31 LEN | МП | | 64DLH18
60DLH18 | 726
729 | 447
420 | 53
59 | 64DLH17
60DLH17 | 610
613 | 372
350 | 49
52 | | 60DLH16 | 579 | 363 | 41 | 52DLH10 | 256 | 136 | 24 | 72DLH19 | 813 | 532 | 58 | 72DLH18 | 673 | 442 | 51 | | 56DLH16 | 582 | 340 | 45
42 | 52DLH11 | 281 | 149 | 26 | 68DLH19 | 816 | 537 | 61 | 60DLH18 | 707 | 395 | 59
60 | | 72DLH17
60DLH17 | 623
665 | 461
412 | 42
49 | 52DLH12
60DLH12 | 314
322 | 163
201 | 29
27 | | 100' LE | NGTH | | 72DLH19
68DLH19 | 789
792 | 501
506 | 60
61 | | 56DLH17 | 670 | 387 | 51 | 56DLH12 | 334 | 188 | 28 | | 100 LE | МОТП | | | | | | | 72DLH18 | 730 | 520 | 47
55 | 52DLH13 | 381 | 197 | 33 | 52DLH10 | 241 | 124 | 24 | | 103' LEI | NGTH | | | 60DLH18
72DLH19 | 768
856 | 466
590 | 55
55 | 60DLH13
60DLH14 | 391
434 | 243
258 | 32
34 | 52DLH11 | 264 | 135 | 26 | EODI III | 007 | 111 | 0.4 | | 68DLH19 | 859 | 596 | 58 | 52DLH14 | 438 | 220 | 38 | 52DLH12
60DLH12 | 295
312 | 149
189 | 29
27 | 52DLH10
52DLH11 | 227
249 | 114
124 | 24
26 | | | | | | 56DLH14 | 457 | 254 | 38 | 56DLH12 | 318 | 173 | 29 | 52DLH12 | 278 | 135 | 29 | | | | | | | | | | | | | | | | | | | Joist
Type | Allow
Loads
Total | | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
s (PLF)
Live | Joist
Weight
(lbs./ft.) | |--|--|--|----------------------------------|---|--|--|----------------------------------|--|--|--|----------------------------------|--|--|--|----------------------------------| | 103' | LENGT | Н (Соі | nt.) | 106' | LENGT | H (Cor | nt.) | 109 | ' LENGT | Н (Со | nt.) | 112' | LENGT | H (Con | ıt.) | | 60DLH12
52DLH13
64DLH13
60DLH13
52DLH14
64DLH14 | 303
338
355
368
390
406 | 178
164
228
215
184
244 | 28
33
32
34
38
34 | 56DLH12
60DLH12
56DLH13
60DLH13
64DLH14 | 284
295
344
358
395
398 | 145
168
175
203
230
216 | 29
29
34
34
34
37 | 60DLH15
72DLH16
64DLH16
72DLH17
60DLH17
64DLH17 |
442
478
495
537
558
571 | 235
301
287
342
298
326 | 43
41
46
47
52
52 | 72DLH17
64DLH17
72DLH18
64DLH18
72DLH19
68DLH19 | 523
555
613
641
718
721 | 324
309
366
349
415
419 | 47
52
53
59
61
67 | | 60DLH14
56DLH14 | 409
411 | 229
214 | 37
38 | 68DLH15
64DLH15 | 428
452 | 273
271 | 37
40 | 60DLH18
64DLH18 | 644
659 | 337
369 | 59
59 | | 13' LEN | | 07 | | 68DLH15
64DLH15 | 440
466 | 289
287 | 35
39 | 60DLH15
72DLH16 | 467
491 | 255
318 | 43
41 | 72DLH19
68DLH19 | 738
741 | 439
443 | 61
67 | | | | 00 | | 60DLH15
68DLH16 | 480
522 | 270
340 | 41
41 | 64DLH16
60DLH16 | 509
513 | 303
285 | 45
46 | | 110' LEI | | 01 | 60DLH12
64DLH12 | 261
266 | 138
156 | 29
29 | | 60DLH16
72DLH17 | 528
569 | 302
384 | 46
45 | 68DLH17
60DLH17 | 572
590 | 365
324 | 46
52 | | | | | 60DLH13
64DLH13 | 316
323 | 167
189 | 34
34 | | 68DLH17
60DLH17 | 588
607 | 386
343 | 47
52 | 68DLH18
60DLH18 | 662
681 | 412
366 | 53
59 | 56DLH11
60DLH12 | 231
274 | 118
150 | 26
29 | 60DLH14
64DLH14 | 350
370 | 178
203 | 37
37 | | 64DLH18
60DLH18 | 697
700 | 413
388 | 56
59 | 68DLH19 | 762 | 468 | 60 | 60DLH13
60DLH14 | 333
370 | 181
193 | 34
37 | 68DLH15
64DLH15 | 401
424 | 240
238 | 39
41 | | 72DLH19
68DLH19 | 781
784 | 491
496 | 60
61 | | 107' LEI | NGTH | | 64DLH14
72DLH15 | 380
409 | 214
251 | 37
36 | 60DLH16
72DLH16 | 451
461 | 235
280 | 46
43 | | | | | 01 | 56DLH11 | 244 | 129 | 36 | 68DLH15
60DLH15 | 412
434 | 254
228 | 38
43 | 68DLH16
72DLH17 | 476
518 | 282
318 | 45
47 | | 1 | 104' LEN | IGTH | | 56DLH12
60DLH12 | 278
289 | 141
163 | 29
29 | 64DLH15
72DLH16 | 436
473 | 251
295 | 41
41 | 60DLH17
64DLH17 | 519
550 | 267
303 | 52
52 | | 52DLH10
52DLH11 | 223
244 | 110
120 | 24
26 | 60DLH13
64DLH14 | 351
391 | 197
226 | 34
34 | 60DLH16
64DLH16 | 476
491 | 255
281 | 46
46 | 72DLH18
64DLH18 | 607
636 | 360
343 | 53
59 | | 52DLH12
56DLH12 | 273
295 | 132
153 | 29
30 | 68DLH15
64DLH15 | 424
448 | 268
266 | 38
40 | 72DLH17
60DLH17 | 533
548 | 336
290 | 47
52 | 72DLH19
68DLH19 | 712
714 | 408
412 | 62
67 | | 60DLH12
52DLH13 | 300
331 | 175
159 | 29
33 | 60DLH15
72DLH16 | 458
487 | 248
312 | 43
41 | 68DLH17
64DLH17 | 551
565 | 338
320 | 49
52 | 1 | 14' LEN | JGTH | | | 64DLH13
56DLH13 | 351
358 | 224
186 | 32
34 | 64DLH16
72DLH17 | 504
548 | 298
355 | 46
46 | 60DLH18
68DLH18 | 632
637 | 327
383 | 59
56 | 60DLH12 | 256 | 134 | 29 | | 60DLH13
52DLH14 | 365
382 | 211
178 | 34
38 | 68DLH17
60DLH17 | 566
579 | 358
315 | 49
52 | 64DLH18
72DLH19 | 653
731 | 362
431 | 59
61 | 64DLH12
60DLH13 | 264 | 153 | 29 | | 64DLH14
60DLH14 | 402
405 | 239
224 | 34
37 | 64DLH17
68DLH18 | 581
655 | 338
405 | 52
53 | 68DLH19 | 734 | 434 | 67 | 64DLH13 | 311
321 | 163
186 | 34
34 | | 64DLH15
60DLH15 | 461
476 | 281
265 | 39
43 | 60DLH18
64DLH18 | 668
671 | 357
383 | 59
59 | | 111' LEI | NGTH | | 60DLH14
64DLH14 | 344
367 | 173
199 | 37
37 | | 72DLH16
68DLH16 | 501
517 | 331
333 | 40
41 | 68DLH19 | 755 | 459 | 61 | 56DLH11 | 227 | 115 | 26 | 68DLH15
60DLH15 | 398
405 | 236
205 | 39
43 | | 60DLH16
72DLH17 | 523
563 | 296
376 | 46
45 | | 108' LEI | NGTH | | 56DLH12
60DLH12 | 259
270 | 126
146 | 30
29 | 64DLH15
60DLH16 | 421
444 | 234
228 | 43
46 | | 68DLH17 | 583 | 379 | 46 | 56DLH11 | 239 | 125 | 26 | 64DLH12
56DLH13 | 271
314 | 161
152 | 28
34 | 72DLH16
68DLH16 | 457
472 | 275
277 | 43
46 | | 60DLH17
72DLH18 | 601
660 | 337
425 | 52
53 | 56DLH12
60DLH12 | 273
284 | 137
158 | 29
29 | 60DLH13
64DLH13 | 327
329 | 176
196 | 34
33 | 64DLH16
72DLH17 | 474
514 | 262
313 | 46
50 | | 68DLH18
60DLH18 | 674
694 | 428
380 | 53
59 | 60DLH13
60DLH14 | 345
383 | 191
205 | 34
37 | 60DLH14
64DLH14 | 363
377 | 189
210 | 37
37 | 64DLH17
60DLH18 | 546
589 | 298
394 | 52
59 | | 68DLH19 | 777 | 486 | 61 | 64DLH14
72DLH15 | 387
417 | 222
260 | 36
36 | 68DLH15
64DLH15 | 408
432 | 249
247 | 38
41 | 64DLH18
72DLH19 | 630
706 | 337
401 | 59
64 | | 1 | 105' LEN | IGTH | | 68DLH15
64DLH15 | 420
444 | 263
261 | 38
40 | 56DLH16
64DLH16 | 436
486 | 214
276 | 46
46 | 68DLH19 | 708 | 404 | 67 | | 56DLH11
56DLH12 | 253
289 | 136
150 | 26
29 | 60DLH15
72DLH16 | 450
482 | 242
307 | 43
41 | 72DLH17
68DLH17 | 528
546 | 330
332 | 47
49 | 1 | 15' LEN | NGTH | | | 60DLH12
64DLH13 | 297
348 | 171
219 | 29
32 | 64DLH16
72DLH17 | 500
542 | 292
349 | 46
46 | 64DLH17
72DLH18 | 560
618 | 314
373 | 52
53 | 60DLH12
64DLH12 | 252 | 131 | 29 | | 56DLH13
60DLH13 | 351
361 | 181
207 | 34
34 | 60DLH17
64DLH17 | 569
576 | 306
332 | 52
52 | 60DLH18
64DLH18 | 621
647 | 319
356 | 59
59 | 60DLH13 | 259
306 | 150
158 | 29
34 | | 64DLH14
60DLH14 | 398
401 | 235
220 | 34
37 | 60DLH18
64DLH18 | 656
665 | 346
376 | 59
59 | 72DLH19
68DLH19 | 725
727 | 423
427 | 61
67 | 64DLH13
60DLH14 | 315
338 | 181
170 | 34
37 | | 68DLH15
64DLH15 | 432
457 | 278
276 | 37
40 | 72DLH19
68DLH19 | 745
748 | 447
451 | 61
61 | | | | 07 | 64DLH14
68DLH15 | 360
394 | 193
232 | 37
39 | | 60DLH15 | 471 | 260 | 43 | | | | 01 | | 112' LEI | | | 60DLH15
64DLH15 | 398
414 | 200
228 | 43
43 | | 72DLH16
68DLH16 | 496
512 | 324
327 | 40
42 | | 109' LEI | | | 56DLH11
56DLH12 | 223
254 | 113
123 | 26
29 | 72DLH16
68DLH16 | 453
467 | 270
272 | 43
46 | | 60DLH16
68DLH17 | 518
577 | 290
372 | 45
46 | 56DLH11
56DLH12 | 235
268 | 122
133 | 26
29 | 60DLH12
64DLH12 | 265
269 | 142
159 | 29
29 | 72DLH17
64DLH17 | 509
536 | 307
290 | 50
52 | | 60DLH17
68DLH18 | 595
668 | 330
420 | 52
53 | 60DLH12
56DLH13 | 279
325 | 154
161 | 29
33 | 56DLH13
60DLH13 | 308
322 | 149
171 | 33
34 | 60DLH18
72DLH18 | 578
597 | 286
347 | 59
54 | | 60DLH18
68DLH19 | 687
769 | 373
477 | 59
61 | 60DLH13
60DLH14 | 339
376 | 187
199 | 34
37 | 64DLH13
60DLH14 | 326
356 | 193
183 | 34
37 | 64DLH18
68DLH19 | 619
702 | 328
397 | 59
66 | | - | 106' LEN | IGTH | | 64DLH14
72DLH15 | 384
413 | 218
255 | 37
36 | 64DLH14
68DLH15 | 373
405 | 206
245 | 37
38 | | 16' LEN | | | | 56DLH11 | 248 | 133 | 26 | 68DLH15
64DLH15 | 416
440 | 258
256 | 38
41 | 64DLH15
64DLH16 | 428
482 | 242
271 | 41
46 | | | | | | JODEITI | 2-10 | .50 | 20 | O IDEI 110 | 770 | 200 | -71 | J IDLI III | 702 | 271 | | 60DLH12 | 248 | 128 | 29 | | Joist
Type | | vable
s (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
Is (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
s (PLF)
Live | Joist
Weight
(lbs:/ft.) | |--------------------|------------|--------------------------|-------------------------------|--------------------|------------|---------------------------|-------------------------------|--------------------|------------|---------------------------|-------------------------------|--------------------|------------|--------------------------|-------------------------------| | 116' | LENGT | H (Coı | nt.) | 119 | ' LENGT | H (Cor | nt.) | 123 | LENG | TH (Co | nt.) | 127' | LENGT | Н (Со | nt.) | | 64DLH12 | 255 | 146 | 29 | 64DLH15 | 387 | 206 | 43 | 64DLH13 | 277 | 148 | 34 | 72DLH15 | 354 | 188 | 41 | | 60DLH13 | 301 | 154 | 34 | 60DLH16 | 407 | 201 | 46 | 68DLH13 | 284 | 168 | 35 | 64DLH16 | 382 | 189 | 46 | | 64DLH13 | 310
332 | 176
165 | 34
37 | 72DLH16
68DLH16 | 437
452 | 252
254 | 45
46 | 64DLH14
68DLH14 | 316
327 | 158
179 | 37
38 | 72DLH16
64DLH17 | 410
439 | 221
215 | 47
52 | | 60DLH14
64DLH14 | 354 | 189 | 37 | 72DLH17 | 492 | 287 | 49 | 68DLH14 | 365 | 201 | 42 | 72DLH17 | 461 | 252 | 53 | | 68DLH15 | 391 | 228 | 39 | 64DLH17 | 501 | 262 | 52 | 72DLH15 | 366 | 200 | 41 | 64DLH18 | 507 | 243 | 59 | | 60DLH15 | 392 | 194 | 43 | 68DLH17 | 509 | 289 | 53 | 72DLH16 | 423 | 236 | 45 | 68DLH18 | 532 | 276 | 60 | | 64DLH15 | 407 | 223 | 43 | 60DLH18 | 540 | 259 | 59
50 | 68DLH16 | 433 | 236 | 49 | 72DLH18 | 540 | 284 | 59
67 | | 60DLH16
68DLH16 | 428
463 | 217
268 | 46
46 | 64DLH18
68DLH18 | 578
589 | 296
327 | 59
60 | 64DLH17
68DLH17 | 468
489 | 237
268 | 52
53 | 72DLH19 | 633 | 323 | 67 | | 60DLH17 | 493 | 247 | 52 | 72DLH19 | 676 | 368 | 67 | 64DLH18 | 540 | 267 | 59 | | 128' LEI | NGTH | | | 72DLH17 | 505 | 302 | 50 | 68DLH19 | 678 | 371 | 67 | 68DLH18 | 566 | 304 | 60 | | | 10111 | | | 64DLH17 | 527 | 283 | 52 | | | | | 72DLH19 | 654 | 344 | 67 | 64DLH12 | 211 | 109 | 29 | | 60DLH18
64DLH18 | 568
608 | 279
320 | 59
59 | | 120' LEI | NGTH | | | 124' LEI | NCTH | | 64DLH13 | 257 | 131 | 34 | | 68DLH19 | 696 | 391 | 66 | 60DLH12 | 232 | 115 | 29 | | 124 LEI | NGIH | | 64DLH14
68DLH14 | 292
303 | 140
159 | 37
38 | | | | | | 64DLH12 | 239 | 132 | 29 | 64DLH12 | 224 | 119 | 29 | 72DLH14 | 307 | 166 | 37 | | 1 | 17' LEN | IGTH | |
60DLH13 | 282 | 139 | 34 | 64DLH13 | 273 | 144 | 34 | 68DLH15 | 337 | 178 | 41 | | 00011140 | | | | 64DLH13 | 291 | 159 | 34 | 68DLH13 | 279 | 164 | 35 | 72DLH15 | 352 | 185 | 41 | | 60DLH12
64DLH12 | 244
251 | 124
142 | 29
29 | 60DLH14
64DLH14 | 310
332 | 149
171 | 37
37 | 64DLH14
68DLH14 | 311
322 | 154
175 | 37
38 | 64DLH16
72DLH16 | 376
407 | 185
218 | 46
47 | | 60DLH13 | 296 | 151 | 34 | 68DLH14 | 337 | 190 | 38 | 68DLH15 | 360 | 196 | 42 | 64DLH17 | 432 | 210 | 52 | | 64DLH13 | 305 | 171 | 34 | 72DLH15 | 375 | 211 | 38 | 72DLH15 | 363 | 197 | 41 | 68DLH17 | 453 | 238 | 53 | | 60DLH14 | 327 | 161 | 37 | 68DLH15 | 378 | 213 | 40 | 64DLH16 | 401 | 203 | 46 | 72DLH17 | 457 | 248 | 53 | | 64DLH14 | 349 | 184 | 37 | 64DLH15 | 381 | 201 | 43 | 72DLH16 | 420 | 232 | 47 | 64DLH18 | 499 | 237 | 59 | | 72DLH15
68DLH15 | 385
387 | 222
224 | 38
41 | 60DLH16
72DLH16 | 400
434 | 196
248 | 46
45 | 68DLH16
64DLH17 | 427
461 | 230
231 | 49
52 | 68DLH18
72DLH18 | 524
536 | 269
280 | 60
59 | | 64DLH15 | 400 | 217 | 43 | 68DLH16 | 448 | 250 | 46 | 68DLH17 | 481 | 262 | 53 | 68DLH19 | 601 | 305 | 67 | | 60DLH16 | 421 | 211 | 46 | 72DLH17 | 488 | 282 | 49 | 64DLH18 | 532 | 261 | 59 | 72DLH19 | 628 | 318 | 67 | | 64DLH16 | 450 | 242 | 46 | 64DLH17 | 492 | 255 | 52 | 68DLH18 | 557 | 297 | 60 | | | | | | 68DLH16
60DLH17 | 459
484 | 263
241 | 46
52 | 68DLH17
60DLH18 | 505
531 | 284
252 | 53
59 | 72DLH19 | 649 | 339 | 68 | | 129' LEI | NGTH | | | 72DLH17 | 501 | 297 | 50 | 64DLH18 | 568 | 288 | 59 | | 125' LEI | NGTH | | 68DLH13 | 259 | 145 | 25 | | 64DLH17 | 518 | 275 | 52 | 68DLH18 | 584 | 321 | 60 | | 125 LEI | NGIH | | 68DLH13 | 299 | 155 | 35
38 | | 60DLH18 | 559 | 272 | 59 | 68DLH19 | 673 | 365 | 67 | 64DLH12 | 221 | 216 | 29 | 72DLH14 | 305 | 163 | 38 | | 64DLH18 | 598
599 | 311
388 | 59
60 | | | | | 64DLH13 | 269 | 141 | 34 | 72DLH15 | 349 | 182 | 41 | | 68DLH18
72DLH19 | 599
687 | 381 | 67 | | 121' LEI | NGTH | | 64DLH14 | 306 | 151 | 37 | 72DLH16 | 403 | 215 | 49 | | 68DLH19 | 690 | 384 | 67 | 64DLH12 | 235 | 129 | 29 | 68DLH14
68DLH15 | 317
354 | 171
191 | 38
41 | 68DLH17
72DLH17 | 446
454 | 232
244 | 53
53 | | | | | | 64DLH13 | 286 | 155 | 34 | 72DLH15 | 360 | 194 | 41 | 68DLH18 | 516 | 263 | 60 | | 1 | 18' LEN | IGTH | | 64DLH14 | 326 | 166 | 37 | 64DLH16 | 394 | 198 | 46 | 72DLH18 | 532 | 276 | 59 | | 00011140 | 0.40 | | | 68DLH14 | 334 | 187 | 38 | 72DLH16 | 416 | 229 | 47 | 72DLH19 | 623 | 313 | 67 | | 60DLH12
64DLH12 | 240
247 | 121
138 | 29
29 | 72DLH15
68DLH15 | 372
375 | 207
209 | 40
40 | 68DLH16
64DLH17 | 420
454 | 225
226 | 49
52 | | 40011.51 | UOTII. | | | 60DLH13 | 291 | 147 | 34 | 72DLH16 | 430 | 244 | 45 | 68DLH17 | 474 | 256 | 53 | | 130' LEI | NGIH | | | 60DLH14 | 321 | 156 | 37 | 68DLH16 | 444 | 246 | 49 | 64DLH18 | 523 | 255 | 59 | 68DLH13 | 255 | 142 | 35 | | 64DLH14 | 343 | 179 | 37 | 72DLH17 | 484 | 278 | 49 | 68DLH18 | 549 | 289 | 60 | 68DLH14 | 294 | 152 | 38 | | 72DLH15
68DLH15 | 382
384 | 218
220 | 38
41 | 68DLH17
64DLH18 | 501
559 | 280
282 | 53
59 | 72DLH19 | 643 | 333 | 67 | 72DLH14 | 303 | 171 | 38 | | 64DLH15 | 394 | 211 | 43 | 68DLH18 | 579 | 316 | 60 | | 106LLE | NCTH | | 72DLH15 | 347 | 191 | 41 | | 60DLH16 | 414 | 206 | 46 | 68DLH19 | 667 | 359 | 67 | | 126' LEI | NGIH | | 72DLH16
68DLH17 | 401
439 | 225
228 | 49
55 | | 72DLH16 | 441 | 257 | 45 | | | | | 64DLH12 | 218 | 114 | 29 | 72DLH17 | 451 | 256 | 56 | | 68DLH16 | 456 | 259 | 46
50 | | 122' LEI | NGTH | | 64DLH13 | 264 | 131 | 34 | 68DLH18 | 508 | 257 | 60 | | 72DLH17
64DLH17 | 496
509 | 292
268 | 50
52 | | | | | 64DLH14 | 301 | 147 | 37 | 72DLH18 | 528 | 289 | 59 | | 68DLH17 | 513 | 294 | 53 | 64DLH12 | 231 | 125 | 29 | 68DLH14 | 312 | 167 | 38 | 68DLH19
72DLH19 | 583
619 | 291
328 | 67
70 | | 60DLH18 | 549 | 266 | 59 | 64DLH13
68DLH13 | 281
288 | 152
171 | 34
35 | 72DLH15
64DLH16 | 357
388 | 191
193 | 41
46 | 7201113 | 013 | 320 | 70 | | 64DLH18 | 587 | 304 | 59 | 64DLH14 | 321 | 162 | 37 | 72DLH16 | 413 | 225 | 47 | | 131' LEI | NGTH | | | 68DLH18
72DLH19 | 594
682 | 333
374 | 60
67 | 68DLH14 | 332 | 185 | 38 | 64DLH17 | 446 | 220 | 52 | | | | | | 68DLH19 | 684 | 374 | 67 | 72DLH15 | 369 | 204 | 40 | 68DLH17 | 467 | 249 | 53 | 68DLH13 | 252 | 138 | 35 | | | | | • | 68DLH15 | 372 | 206 | 42 | 64DLH18 | 515 | 249 | 59 | 68DLH14 | 290 | 148 | 38 | | 1 | 19' LEN | IGTH | | 72DLH16
68DLH16 | 427
441 | 240
242 | 45
49 | 68DLH18
72DLH18 | 540
544 | 283
289 | 60
59 | 72DLH14 | 298 | 167 | 38 | | | | | | 64DLH17 | 476 | 243 | 52 | 72DLH19 | 638 | 328 | 67 | 68DLH15
72DLH15 | 322
342 | 166
187 | 41
43 | | 60DLH12 | 236 | 118 | 29 | 68DLH17 | 497 | 275 | 53 | | | | | 72DLH15 | 395 | 219 | 43 | | 64DLH12 | 243 | 135 | 29 | 64DLH18 | 549 | 274 | 59 | | 127' LEI | NGTH | | 68DLH17 | 433 | 222 | 53 | | 60DLH13
64DLH13 | 286
295 | 143
163 | 34
34 | 68DLH18
72DLH19 | 575
659 | 311
350 | 60
67 | | | | | 72DLH17 | 445 | 250 | 53 | | 64DLH13 | 295
316 | 152 | 34
37 | 68DLH19 | 662 | 353 | 67
67 | 64DLH12 | 214 | 111 | 29 | 68DLH18 | 501 | 251 | 59
50 | | 64DLH14 | 337 | 174 | 37 | 55521115 | | 303 | ٠, | 64DLH13
64DLH14 | 260
296 | 134
143 | 34
37 | 72DLH18
68DLH19 | 520
574 | 283
285 | 59
67 | | 68DLH14 | 340 | 193 | 38 | | 123' LEI | NGTH | | 68DLH14 | 308 | 163 | 38 | 72DLH19 | 609 | 321 | 70 | | 72DLH15 | 378 | 214 | 38 | | | | | 72DLH14 | 309 | 168 | 37 | | | | | | 68DLH15 | 381 | 217 | 40 | 64DLH12 | 228 | 122 | 29 | 68DLH15 | 343 | 182 | 41 | Combin | ea K, \ | /S, LH | & DLF | I Series I | Load I | able | | | |--|--|--|--|--|--|--|----------------------------------|--------------------| | Joist
Type | | wable
s (PLF)
Live | Joist
Weight
(lbs./ft.) | Joist
Type | | wable
ls (PLF)
Live | Joist
Weight
(lbs/ft.) | Joist
Type | | 1 | 32' LEI | NGTH | | 136' | LENGT | H (Cor | nt.) | 144' | | 68DLH13
68DLH14
72DLH14 | 248
286
294 | 135
145
163 | 35
38
38 | 72DLH18
68DLH19
72DLH19 | 483
532
565 | 252
254
286 | 59
67
70 | 72DLH18
72DLH19 | | 68DLH15
72DLH15 | 317
336 | 162
183 | 41
43 | 1 | 37' LEI | NGTH | | | | 68DLH16
72DLH16
68DLH17
72DLH17
68DLH18
72DLH18
68DLH19
72DLH19 | 376
390
427
438
493
512
565
600 | 190
214
217
245
246
276
278
313 | 49
49
53
56
59
59
67
70 | 72DLH14
72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 274
312
363
408
479
557 | 146
163
191
218
247
280 | 38
41
49
53
59
70 | | | 1 | 33' LEI | NGTH | | 1 | 38' LEI | NGTH | | | | 68DLH13
68DLH14
72DLH14
68DLH15
72DLH15
68DLH16 | 244
281
290
312
331
371 | 133
141
159
158
178
186 | 35
38
38
41
41
41 | 72DLH14
72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 270
308
358
402
470
549 | 143
160
188
213
242
274 | 38
42
49
53
59
70 | | | 72DLH16
68DLH17 | 384
420 | 209
212 | 49
53 | 1 | 39' LEI | NGTH | | | | 72DLH17
68DLH18
72DLH18
68DLH19
72DLH19 | 432
486
505
557
591 | 239
240
270
272
306 | 56
59
59
67
70 | 72DLH14
72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 266
303
353
397
463
541 | 139
156
183
209
236
541 | 38
41
49
53
59 | | | 1 | 34' LEI | NGTH | | | 40' LEI | | ,,, | | | 68DLH13
68DLH14
72DLH14
68DLH15
72DLH15
68DLH16
72DLH16
72DLH17 | 241
277
285
308
326
365
378
426 | 130
138
155
155
174
182
205
233 | 35
38
38
41
41
49
49
53 | 72DLH14
72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 262
299
348
391
457
533 | 136
152
179
205
231
263 | 38
41
49
53
59
70 | | | 68DLH18
72DLH18 | 479
497 | 234
265 | 60
59 | 1 | 41' LEI | NGTH | | | | 68DLH19
72DLH19 | 548
582 | 266
300 | 67
70 | 72DLH14 | 259 | 133 | 38 | | | | 35' LEI | | | 72DLH15
72DLH16 | 295
343 | 150
175 | 42
49 | | | | | | | 72DLH17
72DLH18 | 386
450 | 200
227 | 53
59 | | | 68DLH13
68DLH14 | 237
273 | 127
135 | 35
38 | 72DLH19 | 526 | 257 | 70 | | | 72DLH14
68DLH15 | 281
303 | 152
152 | 38
42 | 1 | 42' LEI | NGTH | | | | 72DLH15
68DLH16
72DLH16
68DLH17
72DLH17
68DLH18
72DLH18 | 322
360
373
408
420
472
490 | 171
178
200
203
228
230
258 | 42
49
49
53
53
60
59 | 72DLH14
72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 255
291
338
381
444
518 | 131
147
171
196
222
251 | 38
42
49
53
59
70 | | | 68DLH19
72DLH19 | 540
573 | 260
293 | 67
70 | 1 | 43' LEI | NGTH | | | | | 36' LEI | | | 72DLH14 | 252 | 128 | 38 | | | 68DLH13
68DLH14
72DLH14
68DLH15 | 234
269
277
299 | 124
133
149
148 | 35
38
38
41 | 72DLH15
72DLH16
72DLH17
72DLH18
72DLH19 | 286
334
376
438
511 | 143
169
191
217
247 | 41
49
53
59
70 | | | 72DLH15
68DLH16 | 317
354 | 167
174 | 42
49 | 1 | 44'
LEI | NGTH | | | | 72DLH16
68DLH17
72DLH17
68DLH18 | 368
403
414
465 | 196
198
224
225 | 49
53
56
60 | 72DLH14
72DLH15
72DLH16
72DLH17 | 248
282
329
371 | 125
140
165
188 | 38
41
49
53 | | 144' LENGTH (Cont.) # CODE OF STANDARD PRACTICE FOR STEEL JOISTS AND JOIST GIRDERS Adopted by the Steel Joist Institute April 7, 1931 Revised to May 1, 2000 - Effective May 03, 2005 # SECTION 1. GENERAL ### 1.1 SCOPE The practices and customs set forth herein are in accordance with good engineering practice, tend to ensure safety in steel joist and Joist Girder construction, and are standard within the industry. There shall be no conflict between this code and any legal building regulation. This code shall only supplement and amplify such laws. Unless specific provisions to the contrary are made in a contract for the purchase of steel joists or Joist Girders, this code is understood to govern the interpretation of such a contract. ### 1.2 APPLICATION This Code of Standard Practice is to govern as a standard unless otherwise covered in the architects' and engineers' plans and specifications. # 1.3 DEFINITIONS **Material.** Steel joists, Joist Girders, and accessories as provided by the seller. **Seller.** A company certified by the Steel Joist Institute engaged in the manufacture and distribution of steel joists, Joist Girders, and accessories. **Buyer.** The entity that has agreed to purchase Material from the manufacturer and has also agreed to the terms of sale. **Owner.** The entity that is identified as such in the Contract Documents. **Erector.** The entity that is responsible for the safe and proper erection of the Materials in accordance with all applicable codes and regulations. **Specifying Professional.** The licensed professional who is responsible for sealing the building Contract Documents, which indicates that he or she has performed or supervised the analysis, design and document preparation for the structure and has knowledge of the load-carrying structural system. **Structural Drawings.** The graphic or pictorial portions of the Contract Documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, connections, all loads, schedules, diagrams and notes. Placement Plans. Drawings that are prepared depicting the interpretation of the Contract Documents requirements for the Material to be supplied by the Seller. These floor and/or roof plans are approved by the Specifying Professional, Buyer or owner for conformance with the design requirements. The Seller uses the information contained on these drawings for final Material design. A unique piece mark number is typically shown for the individual placement of the steel joists, Joist Girders and accessories along with sections that describe the end bearing conditions and minimum attachment required so that material is placed in the proper location in the field. ### 1.4 DESIGN In the absence of ordinances or specifications to the contrary, all designs prepared by the **specifying professional** shall be in accordance with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. # 1.5 RESPONSIBILITY FOR DESIGN AND ERECTION When Material requirements are specified, the Seller shall assume no responsibility other than to furnish the items listed in Section 5.2 (a). When Material requirements are not specified, the Seller shall furnish the items listed in Section 5.2 (a) in accordance with Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption, and this code. Pertinent design information shall be provided to the Seller as stipulated in Section 6.1. The Seller shall identify material by showing size and type. In no case shall the Seller assume any responsibility for the erection of the item furnished. # 1.6 PERFORMANCE TEST FOR K-SERIES STEEL JOIST CONSTRUCTION When performance tests on a structure are required, joists in the test panel shall have bridging and top deck applied as used. In addition to the full dead load, the test panel shall sustain for one hour a test load of 1.65 times the nominal live load. After this test load has been removed for a minimum of 30 minutes, the remaining deflection shall not exceed 20% of the deflection caused by the test load. The weight of the test panel itself shall constitute the dead load of the construction and shall include the weight of the joists, bridging, top deck, slab, ceiling materials, etc. The nominal live load shall be the live load specified and in no case shall it be more than the published joist capacity less the dead load. The cost of such tests shall be borne by the purchaser. # SECTION 2. # JOISTS AND ACCESSORIES # 2.1 STEEL JOISTS AND JOIST GIRDERS Steel joists and Joist Girders shall carry the designations and meet the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. **K-**Series joists are furnished with parallel chords only, and with minimum standard end bearing depth of 2 1/2 inches (64 mm). **LH-** and **DLH-**Series joists are furnished either underslung or square ended, with top chords either parallel, pitched one way or pitched two ways. Underslung types are furnished with standard end bearing depth of 5 inches (127 mm) for **LH-**Series. **DLH-**Series are furnished with standard end bearing depths of 5 inches (127 mm) for section numbers thru 17 and 7 1/2 inches (191 mm) for section numbers 18 and 19. The standard pitch is 1/8 inch in 12 inches (1:96). The nominal depth of a pitched Longspan Joist is taken at the center of the span. Joist Girders are furnished either underslung or square ended with top chords either parallel, pitched one way or pitched two ways. Underslung types are furnished with a standard end bearing depth of 7 1/2 inches (191 mm). The standard pitch is 1/8 inch in 12 inches (1:96). The nominal depth of a pitched Joist Girder is taken at the center of the span. Because **LH-** and **DLH-**Series joists may have exceptionally high end reactions, it is recommended that the supporting structure be designed to provide a nominal minimum unit bearing pressure of 750 pounds per square inch (5171 kilo Pascal). # 2.2 JOIST LOCATION AND SPACING The maximum joist spacing shall be in accordance with the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. Where sidewalls, wall beams or tie beams are capable of supporting the floor slab or roof deck, the first adjacent joists may be placed one full space from these members. Joists are provided with camber and may have a significant difference in elevation with respect to the adjacent structure because of this camber. This difference in elevation should be given consideration when locating the first joist adjacent to a side wall, wall beam or tie beam. Open Web Steel Joists, **K-**Series, should be placed no closer than 6 inches (152 mm) to supporting walls or members. Where partitions occur parallel to joists, there shall be at least one joist provided under each such partition, and more than one such joist shall be provided if necessary to safely support the weight of such partition and the adjacent floor, less the live load, on a strip of floor one foot (305 mm) in width. When partitions occur perpendicular to the joists, they shall be treated as concentrated loads, and joists shall be investigated as indicated in Section 6.1. ### 2.3 SLOPED END BEARINGS Where steel joists or Joist Girders are sloped, beveled ends or sloped end bearings may be provided where the slope exceeds 1/4 inch in 12 inches (1:48). When sloped end bearings are required, the seat depths shall be adjusted to maintain the standard height at the shallow end of the sloped bearing. For Open Web Steel Joists, **K-**Series, bearing ends will not be beveled for slopes of 1/4 inch or less in 12 inches (1:48). # 2.4 EXTENDED ENDS Steel joist extended ends shall be in accordance with Manufacturer's Standard and shall meet the requirements of — See page 37. # 2.5 CEILING EXTENSIONS Ceiling extensions shall be furnished to support ceilings which are to be attached to the bottom of the joists. They are not furnished for the support of suspended ceilings. The ceiling extension shall be either an extended bottom chord element or a loose unit, whichever is standard with the manufacturer, and shall be of sufficient strength to properly support the ceiling. # TABLE 2.6-1a K-SERIES JOISTS MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING | | **BRIDGING MATERIAL SIZE | | | | | | | |--------------------|---|--|--|--|--|--|---| | Round Rod | | | Equal Leg Angles | | | | | | SECTION
NUMBER* | 1/2" round
(13 mm)
r = 0.13"
(3.30 mm) | 1 x 7/64
(25 mm x 3 mm)
r = 0.20"
(5.08 mm) | 1-1/4 x 7/64
(32 mm x 3 mm)
r = 0.25"
(6.35 mm) | 1-1/2 x 7/64
(38 mm x 3 mm)
r = 0.30"
(7.62 mm) | 1-3/4 x 7/64
(45 mm x 3 mm)
r = 0.35"
(8.89 mm) | 2 x 1/8
(52 mm x 3 mm)
r = 0.40"
(10.16 mm) | 2-1/2 x 5/32
(64 mm x 4 mm)
r = 0.50"
(12.70 mm) | | 1 – 9 | 3'- 3"
(991 mm) | 5'- 0"
(1524 mm) | 6'- 3"
(1905 mm) | 7'- 6"
(2286 mm) | 8'- 7"
(2616 mm) | 10'- 0"
(3048 mm) | 12'- 6"
(3810 mm) | | 10 | 3'- 0"
(914 mm) | 4'- 8"
(1422 mm) | 6'- 3"
(1905 mm) | 7'- 6"
(2286 mm) | 8'- 7"
(2616 mm) | 10'- 0"
(3048 mm) | 12'- 6"
(3810 mm) | | 11–12 | 2'- 7"
(787 mm) | 4'- 0"
(1219 mm) | 5'- 8"
(1727 mm) | 7'-
6"
(2286 mm) | 8'- 7"
(2616 mm) | 10'- 0"
(3048 mm) | 12'- 6"
(3810 mm) | ^{*} Refer to last digit(s) of Joist Designation ^{* *} Connection to Joist must resist a nominal unfactored 700 pound force (3114 N) # TABLE 2.6-1b LH-SERIES JOISTS # MAXIMUM JOIST SPACING FOR HORIZONTAL BRIDGING SPANS OVER 60 ft. (18.3 m) REQUIRE BOLTED DIAGONAL BRIDGING | | **BRIDGING ANGLE SIZE – (EQUAL LEG ANGLE) | | | | | | | |--------------------|--|--|--|--|--|---|--| | SECTION
NUMBER* | 1 x 7/64
(25 mm x 3 mm)
r = 0.20"
(5.08 mm) | 1-1/4 x 7/64
(32 mm x 3 mm)
r = 0.25"
(6.35 mm) | 1-1/2 x 7/64
(38 mm x 3 mm)
r = 0.30"
(7.62 mm) | 1-3/4 x 7/64
(45 mm x 3 mm)
r = 0.35"
(8.89 mm) | 2 x 1/8
(52 mm x 3 mm)
r = 0.40"
(10.16 mm) | 2-1/2 x 5/32
(64 mm x 4 mm)
r = 0.50"
(12.70 mm) | | | 02, 03, 04 | 4' – 7"
(1397 mm) | 6' - 3"
(1905 mm) | 7' – 6"
(2286 mm) | 8' – 9"
(2667 mm) | 10' – 0"
(3048 mm) | 12' – 4"
(3759 mm) | | | 05 – 06 | 4' – 1"
(1245 mm) | 5' – 9"
(1753 mm) | 7' – 6"
(2286 mm) | 8' – 9"
(2667 mm) | 10' – 0"
(3048 mm) | 12' – 4"
(3759 mm) | | | 07 – 08 | 3' – 9"
(1143 mm) | 5' – 1"
(1549 mm) | 6' - 8"
(2032 mm) | 8' - 6"
(2590 mm) | 10' – 0"
(3048 mm) | 12' – 4"
(3759 mm) | | | 09 – 10 | | 4' - 6"
(1372 mm) | 6' - 0"
(1829 mm) | 7' – 8"
(2337 mm) | 10' – 0"
(3048 mm) | 12' – 4"
(3759 mm) | | | 11 – 12 | | 4' – 1"
(1245 mm) | 5' – 5"
(1651 mm) | 6' – 10"
(2083 mm) | 8' – 11"
(2718 mm) | 12' – 4"
(3759 mm) | | | 13 – 14 | | 3' - 9"
(1143 mm) | 4' – 11"
(1499 mm) | 6' - 3"
(1905 mm) | 8' - 2"
(2489 mm) | 12' – 4"
(3759 mm) | | | 15 – 16 | | | 4' - 3"
(1295 mm) | 5' – 5"
(1651 mm) | 7' – 1"
(2159 mm) | 11' – 0"
(3353 mm) | | | 17 | | | 4' - 0"
(1219 mm) | 5' – 1"
(1549 mm) | 6' - 8"
(2032 mm) | 10' – 5"
(3175 mm) | | ^{*} Refer to last two digits of Joist Designation # 2.6 BRIDGING AND BRIDGING ANCHORS - (a) Bridging standard with the manufacturer and complying with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption shall be used for bridging all joists furnished by the manufacturer. Positive anchorage shall be provided at the ends of each bridging row at both top and bottom chords. - (b) For K- and LH-Series Joists horizontal bridging is recommended for spans up to and including 60 feet (18.3 m) except where the Steel Joist Institute Standard Specifications Load Tables & Weight Tables require bolted diagonal bridging for erection stability. **LH-** and **DLH-**Series Joists exceeding 60 feet (18.3 m) in length shall have bolted diagonal bridging for all rows. Refer to Section 6 in the **K-**Series Specifications and Section 105 in the **LH-** and **DLH-**Series Specifications for erection stability requirements. Refer to page 150 for OSHA steel joist erection stability requirements. Horizontal bridging shall consist of continuous horizontal steel members. The ℓ/r ratio for horizontal bridging shall not exceed 300. The material sizes shown in Tables 2.6-1a and 2.6-1b meet the criteria. (c) Diagonal cross bridging consisting of angles or other shapes connected to the top and bottom chords, of K-, LH- and DLH-Series Joists shall be used when required by the applicable Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. Diagonal bridging, when used, shall have an ℓ/r ratio not exceeding 200. When the bridging members are connected at their point of intersection, the material sizes listed in Table 2.6-2 will meet the above specification. ^{*} Connection to Joist must resist force listed in Table 104.5-1 - (d) When bolted diagonal erection bridging is required, the following shall apply: - 1. The bridging shall be indicated on the joist placement plan. - 2. The joist placement plan shall be the exclusive indicator for the proper placement of this bridging. - Shop installed bridging clips, or functional equivalents, shall be provided where the bridging bolts to the steel joist. - 4. When two pieces of bridging are attached to the steel joist by a common bolt, the nut that secures the first piece of bridging shall not be removed from the bolt for the attachment of the second piece. - 5. Bridging attachments shall not protrude above the top chord of the steel joists. # TABLE 2.6-2 K, LH AND DLH SERIES JOISTS MAXIMUM JOIST SPACING FOR DIAGONAL BRIDGING | | **BRIDGING ANGLE SIZE – (EQUAL LEG ANGLE) | | | | | | | | |---------------|---|---------------------------------------|---------------------------------------|---------------------------------------|--|--|--|--| | | 1 x 7/64 | 1-1/4 x 7/64 | 1-1/2 x 7/64 | 1-3/4 x 7/64 | 2 x 1/8 | | | | | JOIST DEPTH | (25 mm x 3 mm)
r = 0.20" (5.08 mm) | (32 mm x 3 mm)
r = 0.25" (6.35 mm) | (38 mm x 3 mm)
r = 0.30" (7.62 mm) | (45 mm x 3 mm)
r = 0.35" (8.89 mm) | (50 mm x 3 mm)
r = 0.40" (10.16 mm) | | | | | 12" (305 mm) | 6' – 6" (1981 mm) | 8' – 3" (2514 mm) | 9' – 11" (3022 mm) | 11'-7" (3530 mm) | | | | | | 14" (356 mm) | 6' – 6" (1981 mm) | 8' – 3" (2514 mm) | 9' – 11" (3022 mm) | 11'-7" (3530 mm) | | | | | | 16" (406 mm) | 6' – 6" (1981 mm) | 8' – 2" (2489 mm) | 9' – 10" (2997 mm) | 11'-6" (3505 mm) | | | | | | 18" (457 mm) | 6' – 6" (1981 mm) | 8' – 2" (2489 mm) | 9' – 10" (2997 mm) | 11'-6" (3505 mm) | | | | | | 20" (508 mm) | 6' – 5" (1955 mm) | 8' – 2" (2489 mm) | 9' – 10" (2997 mm) | 11'-6" (3505 mm) | | | | | | 22" (559 mm) | 6' – 4" (1930 mm) | 8' – 1" (2463 mm) | 9' – 10" (2997 mm) | 11'-6" (3505 mm) | | | | | | 24" (610 mm) | 6' – 4" (1930 mm) | 8' – 1" (2463 mm) | 9' – 9" (2971 mm) | 11' – 5" (3479 mm) | | | | | | 26" (660 mm) | 6' – 3" (1905 mm) | 8' – 0" (2438 mm) | 9' – 9" (2971 mm) | 11' – 5" (3479 mm) | | | | | | 28" (711 mm) | 6' – 2" (1879 mm) | 8' – 0" (2438 mm) | 9' – 8" (2946 mm) | 11' – 5" (3479 mm) | | | | | | 30" (762 mm) | 6' – 2" (1879 mm) | 7' – 11" (2413 mm) | 9' – 8" (2946 mm) | 11' – 4" (3454 mm) | | | | | | 32" (813 mm) | 6' – 1" (1854 mm) | 7' – 10" (2387 mm) | 9' – 7" (2921 mm) | 11' – 4" (3454 mm) | 13' – 0" (3962 mm) | | | | | 36" (914 mm) | | 7' – 9" (2362 mm) | 9' – 6" (2895 mm) | 11' – 3" (3429 mm) | 12' – 11" (3973 mm) | | | | | 40" (1016 mm) | | 7' – 7" (2311 mm) | 9' – 5" (2870 mm) | 11'-2" (3403 mm) | 12' – 10" (3911 mm) | | | | | 44" (1118 mm) | | 7' – 5" (2260 mm) | 9' – 3" (2819 mm) | 11'-0" (3352 mm) | 12' – 9" (3886 mm) | | | | | 48" (1219 mm) | | 7' – 3" (2209 mm) | 9' – 2" (2794 mm) | 10' – 11" (3327 mm) | 12' – 8" (3860 mm) | | | | | 52" (1321 mm) | | | 9' – 0" (2743 mm) | 10' – 9" (3276 mm) | 12' – 7" (3835 mm) | | | | | 56" (1422 mm) | | | 8' – 10" (2692 mm) | 10' – 8" (3251 mm) | 12' – 5" (3784 mm) | | | | | 60" (1524 mm) | | | 8' – 7" (2616 mm) | 10' – 6" (3200 mm) | 12' – 4" (3759 mm) | | | | | 64" (1626 mm) | | | 8' – 5" (2565 mm) | 10' – 4" (3149 mm) | 12' – 2" (3708 mm) | | | | | 68" (1727 mm) | | | 8' – 2" (2489 mm) | 10' – 2" (3098 mm) | 12' – 0" (3657 mm) | | | | | 72" (1829 mm) | | | 8' – 0" (2438 mm) | 10' – 0" (3048 mm) | 11' – 10" (3606 mm) | | | | # MINIMUM A307 BOLT REQUIRED FOR CONNECTION SERIES *SECTION NUMBER BOLT DIAMETER | K | ALL | 3/8" | (10 mm) | |---------|-----------|------|---------| | LH, DLH | 2 - 12 | 3/8" | (10 mm) | | LH, DLH | 13 - 17 | 1/2" | (13 mm) | | DLH | 18 and 19 | 5/8" | (16 mm) | | | | | | *Refer to last digit(s) of Joist Designation # 2.7 HEADERS Headers for Open Web Steel Joists, **K**-Series as outlined and defined in Section 5.2 (a) shall be furnished by the Seller. Such headers shall be any type standard with the manufacturer. Conditions involving headers shall be investigated and, if necessary, provisions made to provide a safe condition. Headers are not provided for Longspan Steel Joists, **LH**-Series, and Deep Longspan Steel Joists, **DLH**-Series. # 2.8 BOTTOM CHORD LATERAL BRACING FOR JOIST GIRDERS Bottom chord lateral bracing may be furnished to prevent lateral movement of the bottom chord of the Joist Girder and to prevent the ratio of chord length to chord radius of gyration from exceeding that specified in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. The lateral bracing shall be that which is standard with the manufacturer, and shall be sufficient to properly brace the bottom chord of the Joist Girder. # SECTION 3. # **MATERIALS** ### 3.1 STEEL The steel used in the manufacture of joists and Joist Girders shall comply with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. ### 3.2 PAINT - (a) Standard Shop Paint The shop coat of paint, when specified, shall comply with the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption. - (b) Disclaimer The typical shop applied paint that is used to coat steel joists and Joist Girders is a dip applied, air dried paint. The paint is intended to be an impermanent and provisional coating which will protect the steel for only a short period of exposure in ordinary atmospheric conditions. Since most steel joists and Joist Girders are painted using a standard dip coating, the coating may not be uniform and may include drips, runs, and sags. Compatibility of any coating including fire protective coatings applied over a standard shop paint shall be the responsibility of the specifier and/or painting contractor. The shop applied paint may require field touch-up/repair as a result of, but not limited to, the following:
Abrasions from: Bundling, banding, loading and unloading, chains, dunnage during shipping, cables and chains during erection, bridging, installation, and other handling at the jobsite. NOTE: Rusting should be expected at any abrasion. - 2. Dirt. - 3. Diesel smoke. - 4. Road salt. - 5. Weather conditions during storage. The joist manufacturer shall not be responsible for the condition of the paint if it is not properly protected after delivery. Inspections shall be made in accordance with the Steel Joist # SECTION 4. # **INSPECTION** Institute Standard Specifications Load Tables & Weight Tables Section 5.12 for K-Series, Section 104.13 for LH-and DLH-Series, and Section 1004.10 for Joist Girders. # SECTION 5. # **ESTIMATING** ### 5.1 PLANS FOR BIDDING Plans to serve as the basis for bids shall show the character of the work with sufficient clarity to permit making an accurate estimate and shall show the following: Designation and location of Materials (See Section 5.2 [a]), including any special design or configuration requirements. Locations and elevations of all steel and concrete supporting members and bearing walls. Location and length of joist extended ends. Location and size of all openings in floors and roofs. Location of all partitions. Loads and their locations as defined in Section 6.1. Construction and thickness of floor slabs, roof deck, ceilings and partitions. Joists or Joist Girders requiring extended bottom chords. Paint, if other than manufacturer's standard. ### **5.2 SCOPE OF ESTIMATE** (a) Unless otherwise specified, the following items shall be included in the estimate, and requirements shall be determined as outlined in Section 6.1. Steel Joists. Joist Girders. Joist Substitutes. Joist Extended Ends. Ceiling Extensions. Extended bottom chord used as strut. Bridging and bridging anchors. Joist Girder bottom chord bracing. Headers which are defined as members supported by and carrying Open Web Steel Joists, K-Series. One shop coat of paint, when specified, shall be in accordance with Section 3.2. (b) The following items shall not be included in the estimate but may be quoted and identified by the joist manufacturer as separate items: Headers for Longspan Steel Joists, LH-Series. # CODE OF STANDARD PRACTICE FOR STEEL JOISTS AND JOIST GIRDERS Headers for Deep Longspan Steel Joists, **DLH-**Series. Reinforcement in slabs over joists. Centering material, decking, and attachments. Miscellaneous framing between joists for openings at ducts, dumbwaiters, ventilators, skylights, etc. Loose individual or continuous bearing plates and bolts or anchors for such plates. Erection bolts for joist and Joist Girder end anchorage. Horizontal bracing in the plane of the top and bottom chords from joist to joist or joist to structural framing and walls. Wood nailers. Moment plates. Special joist configuration or bridging layouts for ductwork or sprinkler systems. Shear Studs. # SECTION 6. # PLANS AND SPECIFICATIONS # **6.1 PLANS FURNISHED BY BUYER** The Buyer shall furnish the Seller plans and specifications as prepared by the **specifying professional** showing all Material requirements and steel joist and/or steel Joist Girder designations, the layout of walls, columns, beams, girders and other supports, as well as floor and roof openings and partitions correctly dimensioned. The live loads to be used, the wind uplift if any, the weights of partitions and the location and amount of any special loads, such as monorails, fans, blowers, tanks, etc., shall be indicated. The elevation of finished floors, roofs, and bearings shall be shown with due consideration taken for the effects of dead load deflections. ### (a) Loads - The Steel Joist Institute does not presume to establish the loading requirements for which structures are designed. The Steel Joist Institute Load Tables are based on uniform loading conditions and are valid for use in selecting joist sizes for gravity loads that can be expressed in terms of "pounds per linear foot" (kiloNewtons per Meter) of joist. The Steel Joist Institute Joist Girder Weight Tables are based on uniformly spaced panel point loading conditions and are valid for use in selecting Joist Girder sizes for gravity conditions that can be expressed in kips (kiloNewtons) per panel point on the Joist Girder. The **specifying professional** shall provide the nominal loads and load combinations as stipulated by the applicable code under which the structure is designed and shall provide the design basis (ASD or LRFD). The **specifying professional** shall calculate and provide the magnitude and location of ALL JOIST and JOIST GIRDER LOADS. This includes all special loads (drift loads, mechanical units, net uplift, axial loads, moments, structural bracing loads, or other applied loads) which are to be incorporated into the joist or Joist Girder design. For Joist Girders, reactions from supported members shall be clearly denoted as point loads on the Joist Girder. When necessary to clearly convey the information, a Load Diagram or Load Schedule shall be provided. The **specifying professional** shall give due consideration to the following loads and load effects: - 1. Ponded rain water. - Accumulation of snow in the vicinity of obstructions such as penthouses, signs, parapets, adjacent buildings, etc. - 3 Wind - 4. Type and magnitude of end moments and/or axial forces at the joist and Joist Girder end supports shall be shown on the structural drawings. For moment resisting joists or Joist Girders framing near the end of a column, due consideration shall be given to extend the column length to allow a plate type connection between the top of the joist or Joist Girder top chord and the column. Avoid resolving joist or Joist Girder end moments and axial forces through the bearing seat connection. A note shall be provided on the structural drawings stating that all moment resisting joists shall have all dead loads applied to the joist <u>before</u> the bottom chord struts are welded to the supporting connection whenever the moments provided do not include dead load. The top and bottom chord moment connection details shall be designed by the **specifying professional**. The joist designer shall furnish the **specifying professional** with the joist detail information if requested. The nominal loads, as determined by the **specifying professional**, shall not be less than that specified in the applicable building codes. Where concentrated loads occur, the magnitude and location of these concentrated loads shall be shown on the **structural drawings** when, in the opinion of the **specifying professional**, they may require consideration by the joist manufacturer. The **specifying professional** shall use one of the following options that allows the: - Estimator to price the joists. - Joist manufacturer to design the joists properly. - Owner to obtain the most economical joists. **Option 1:** Select a Standard Steel Joist Institute joist for the uniform design loading and provide the load and location of any additional loads on the structural plan with a note "Joist manufacturer shall design joists for additional loads as shown". This option works well for a few added loads per joist with known locations. **Option 2:** Select a KCS joist using moment and end reaction. This option works well for concentrated loads for which exact locations are not known or for multiple loading. See examples and limitations on the pages accompanying the KCS Joist Load Tables. - a) Determine the maximum moment - b) Determine the maximum end reaction (shear) - Select the required KCS joist that provides the required moment and end reaction (shear). **Option 3:** Specify a SPECIAL joist with load diagrams. This option is preferred when the joist includes loading that cannot clearly be denoted on the structural drawings. - a) Provide a load diagram to clearly define ALL loads - b) Place the designation (i.e. 18K SP or 18LH SP) under the load diagram with the following note: "Joist manufacturer to design joist to support loads as shown above". CAUTION: The **specifying professional** shall compare the equivalent uniform loads derived from the maximum moment and shear to the uniform loads tabulated in the **K-**Series Load Table. An equivalent unfactored uniform load in excess of 550 plf (8020 N/m) or a maximum unfactored end reaction exceeding 9200 lbs (40.9 kN) indicates that the **specifying professional** shall consider using additional joists to reduce the loading or use an **LH-**Series Joist and make provisions for 5 inch (127 mm) deep bearing seats. SPECIAL LOADING: Please note the load combinations shown are for referenced examples only and it is not to be presumed that the joist designer is responsible for the applicable building code load combinations. If the loading criteria are too complex to adequately communicate in a simple load diagram, then the specifying professional shall provide a load schedule showing the specified design loads, load categories, and required load combinations with applicable load factors. # ASD EXAMPLE: U.S. CUSTOMARY UNITS AND (METRIC UNITS) Load diagram per ASCE 7 2.4.1(3) D+S ### LRFD EXAMPLE: # U.S. CUSTOMARY UNITS AND (METRIC UNITS) Factored Load diagram per ASCE 7 2.3.2(3) 1.2D + 1.6S Joist manufacturer to design joist to support factored loads as shown. ### (b) Connections - Minimum End Anchorage for simple span gravity loading shall be in accordance with Steel Joist Institute Standard Specifications Load Tables & Weight Tables Section 5.6 for K-Series, Section 104.4 for LH- and DLH-Series, and Section 1004.6 for Joist Girders. The specifying professional is responsible for the design of the joist and Joist Girder connection when it is subject to any loads other than simple span gravity loading including uplift and lateral loads. The specifying professional is also responsible for bridging termination connections. The contract documents must clearly illustrate these
connections. # (c) Special Considerations The **specifying professional** shall indicate on the construction documents special considerations including: - a) Profiles for non-standard joist and Joist Girder configurations (Standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption). - b) Oversized or other non-standard web openings - c) Extended ends - Deflection criteria for live and total loads for non-SJI standard joists - e) Non-SJI standard bridging # **6.2 PLANS FURNISHED BY SELLER** The Seller shall furnish the Buyer with steel joist placement plans to show the Material as specified on the construction documents and are to be utilized for field installation in accordance with specific project requirements as stated in Section 6.1. Steel placement plans shall include, at a minimum, the following: Listing of all applicable loads as stated in Section 6.1 and used in the design of the steel joists and Joist Girders as specified in the construction documents. - Profiles for non-standard joist and Joist Girder configurations (Standard joist and Joist Girder configurations are as indicated in the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption). - 3. Connection requirements for: - a) Joists supports - b) Joist Girder supports - c) Field splices - d) Bridging attachments - Deflection criteria for live load and total loads for non-SJI standard joists. - 5. Size, location, and connections for all bridging - 6. Joists headers All Material shall be identified with its mark which also appears on the bill of material. The shop paint shall be as noted on the joist placement plans. Steel joist placement plans do not require the seal and signature of the joist manufacturer's registered design professional. # **6.3 DISCREPANCIES** The specifying professional's bid plans and specifications will be assumed to be correct in the absence of written notice from the Buyer to the contrary. When plans are furnished by the Buyer which do not agree with the Architect's bid plans, such detailed plans shall be considered as a written notice of change of plans. However, it shall be the Buyer's responsibility to advise the Seller of those changes which affect the joists or Joist Girders. # **6.4 APPROVAL** When joist placement plans are furnished by the Seller, prints thereof are submitted to the Buyer and owner for examination and approval. The Seller allows a maximum of fourteen (14) calendar days in their schedule for the return of placement plans noted with the owner's and customer's approval, or approval subject to corrections as noted. The Seller makes the corrections, furnishes corrected prints for field use to the owner/customer and is released by the owner/customer to start joist manufacture. Approval by the owner/customer of the placement plans, sections, notes and joist schedule prepared by the Seller indicates that the Seller has correctly interpreted the contract requirements, and is released by the owner/customer to start joist manufacture. This approval constitutes the owner's/customer's acceptance of all responsibility for the design adequacy of any detail configuration of joist support conditions shown by the Seller as part of the preparation of these placement plans. Approval does not relieve the Seller of the responsibility for accuracy of detail dimensions on the plans, nor the general fit-up of joists to be placed in the field. ### 6.5 CHANGES When any changes in plans are made by the buyer (or the buyers representative) either prior to or after approval of detailed plans, or when any Material is required and was not shown on the plans used as the basis of the bid, the cost of such changes and/or extra Material shall be paid by the Buyer at a price to be agreed upon between Buyer and Seller. # 6.6 CALCULATIONS The seller shall design the steel joists and/or steel Joist Girders in accordance with the current Steel Joist Institute Standard Specifications Load Tables & Weight Tables to support the load requirements of Section 6.1. The **specifying professional** may require submission of the steel joist and Joist Girder calculations as prepared by a registered design professional responsible for the product design. If requested by the **specifying professional**, the steel joist manufacturer shall submit design calculations with a cover letter bearing the seal and signature of the joist manufacturer's registered design professional. In addition to standard calculations under this seal and signature, submittal of the following shall be included: - Non-SJI standard bridging details (e.g. for cantilevered conditions, net uplift, etc.) - 2. Connection details for: - a) Non-SJI standard connections (e.g. flush framed or framed connections) - b) Field splices - c) Joist headers SECTION 7.* # HANDLING AND ERECTION The current OSHA SAFETY STANDARDS FOR STEEL ERECTION, 29 CFR PART 1926, SUBPART R- STEEL ERECTION, refers to certain joists at or near columns to be designed with sufficient strength to allow one employee to release the hoisting cable without the need for erection bridging. This STANDARD shall not be interpreted that any joist at or near a column line is safe to support an employee without bridging installed. Many limitations exist that prevent these joists from being designed to safely allow an employee on an un-bridged joist. Because of these limitations these joists must be erected by incorporating erection methods ensuring joist stability and either: - Installing bridging or otherwise stabilizing the joist prior to releasing the hoisting cable, or - Releasing the hoisting cable without having a worker on the joist. A steel joist or Joist Girder shall not be placed on any support structure unless such structure is stabilized. When steel joists or Joist Girders are landed on a structure, they shall be secured to prevent unintentional displacement prior to installation. A bridging terminus point shall be established before joist bridging is installed. Steel joist and Joist Girders shall not be used as anchorage points for a fall arrest system unless written directions to do so is obtained from a "qualified person" (1). No modification that affects the strength of a steel joist or Joist Girder shall be made without the written approval of the project engineer of record. The Buyer and/or Erector shall check all materials on arrival at job site and promptly report to Seller any discrepancies and/or damages. The Buyer and/or Erector shall comply with the requirements of the Steel Joist Institute Standard Specifications Load Tables & Weight Tables of latest adoption in the handling and erection of Material. The Seller shall not be responsible for the condition of paint finish on Material if it is not properly protected after delivery. The Seller shall not be responsible for improper fit of Material due to inaccurate construction work. - * For thorough coverage of this topic, refer to SJI Technical Digest #9, "Handling and Erection of Steel Joists and Joist Girders". - (1) See page 150 for OSHA definition of a qualified person. # SECTION 8. # **BUSINESS RELATIONS** ### **8.1 PRESENTATION OF PROPOSALS** All proposals for furnishing Material shall be made on a Sales Contract Form. After acceptance by the Buyer, these proposals must be approved or executed by a qualified official of the Seller. Upon such approval the proposal becomes a contract. # 8.2 ACCEPTANCE OF PROPOSALS All proposals are intended for prompt acceptance and are subject to change without notice. ## 8.3 BILLING Contracts on a lump sum basis are to be billed proportionately as shipments are made. ### **8.4 PAYMENT** Payments shall be made in full on each invoice without retention. # **8.5 ARBITRATION** All business controversies which cannot be settled by direct negotiations between Buyer and Seller shall be submitted to arbitration. Both parties shall sign a submission to arbitration and if possible agree upon an arbitrator. If they are unable to agree, each shall appoint an arbitrator and these two shall appoint a third arbitrator. The expenses of the arbitration shall be divided equally between the parties, unless otherwise provided for in the agreements to submit to arbitration. The arbitrators shall pass final judgment upon all questions, both of law and fact, and their findings shall be conclusive. # **GLOSSARY** # **NOTES:** Terms in **Bold** and their definitions come from the AISC AND AISI STANDARD Standard Definitions for Use in the Design of Steel Structures, 2004 Edition, First Printing April 2005. - * These terms are usually qualified by the type of *load effect*, e.g., nominal tensile strength, available compressive strength, design flexural strength. - ** Term usually qualified by the type of component, e.g. local web buckling, local flange buckling, etc. Accessories. Structural components related to the design, fabrication and erection of *joists* and *Joist Girders* including, but not limited to sloped *end bearings*, *extended ends*, *ceiling extensions*, *bridging* and bridging anchors, *headers* and bottom chord lateral bracing for *Joist Girders*. **ASD** (Allowable Strength Design). Method of proportioning structural components such that the *allowable strength* equals or exceeds the *required strength* of the component under the action of the *ASD load combinations*. **ASD Load Combination.** Load combination in the applicable building code intended for allowable strength design (allowable stress design). **Allowable Strength*.** *Nominal strength* divided by the safety factor, R_n/Ω . **Applicable Building Code.** Building code under which the structure is designed. **Available Strength*.** Design strength or allowable strength as appropriate. Bay. The distance between the main structural frames or walls of a building. Bearing. The distance that the bearing shoe or seat of a
joist or *Joist Girder* extends over its masonry, concrete or steel support. Bearing Plate. The steel plate used for a *joist* or *Joist Girder* to bear on when it is supported by masonry or concrete supports. The plate is designed by the *Specifying Professional* to carry the *joist* reaction to the supporting structure. Bottom Chord Extension (BCX). The two angle extended part of a *joist* bottom chord from the first bottom chord panel point towards the end of the joist. Bridging. In general, a member connected to a joist to brace it from lateral movement. See also Diagonal Bridging and Horizontal Bridging Buckling. *Limit state* of sudden change in the geometry of a structure or any of its elements under a critical loading condition. Buckling Strength. *Nominal strength* for *buckling* or instability *limit states*. Buyer. The entity that has agreed to purchase *material* from the manufacturer and has also agreed to the terms of sale. Camber. An upward curvature of the chords of a *joist* or *Joist Girder* induced during shop fabrication. Note this is in addition to the pitch of the top chord. Ceiling Extension. A *bottom chord extension* except that only one angle of the *joist* bottom chord is extended from the first bottom chord panel point towards the end of the joist. Chords. The top and bottom members of a *joist* or *Joist Girder*. When a chord is comprised of two angles there is usually a gap between the members. Clear Span. The actual clear distance or opening between supports for a joist, that is the distance between walls or the distance between the edges of flanges of beams. **Cold-Formed Steel Structural Member.** Shape manufactured by press-braking blanks sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both forming operations being performed at ambient room temperature, that is, without manifest addition of heat such as would be required for hot forming. Collateral Load. All additional dead loads other than the weight of the building, such as sprinklers, pipes, ceilings, and mechanical or electrical components. **Connection.** Combination of structural elements and *joints* used to transmit forces between two or more members. See also Splice. Deck. A floor or roof covering made out of gage metal attached by welding or mechanical means to *joists*, beams, *purlins*, or other structural members and can be galvanized, painted, or unpainted. **Design Load.** Applied load determined in accordance with either *LRFD load combinations* or *ASD load combinations*, whichever is applicable. **Design Strength*.** Resistance factor multiplied by the nominal strength, ϕR_n . Diagonal Bridging. Two angles or other structural shapes connected from the top chord of one *joist* to the bottom chord of the next joist to form an 'X' shape. These members are almost always connected at their point of intersection. **Diaphragm.** Roof, floor or other membrane or bracing system that transfers in-plane forces to the lateral force resisting system. Effective Length. Length of an otherwise identical column with the same strength when analyzed with pin-ended boundary conditions. Elastic Analysis. *Structural analysis* based on the assumption that the structure returns to its original geometry on removal of the *load*. End Diagonal or Web. The first web member on either end of a joist or Joist Girder which begins at the top chord at the seat and ends at the first bottom chord panel point. Erector. The entity that is responsible for the safe and proper erection of the *materials* in accordance with all applicable codes and regulations. Extended End. The extended part of a joist top chord with the seat angles also being extended from the end of the joist extension back into the joist and maintaining the standard end bearing depth over the entire length of the extension. Factored Load. Product of a *load factor* and the *nominal* load Filler. A rod, plate or angle welded between a two angle web member or between a top or bottom chord panel to tie them together, usually located at the middle of the member. Flexural Buckling. Buckling mode in which a compression member deflects laterally without twist or change in crosssectional shape. **Flexural-Torsional Buckling.** Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape. **Girt.** Horizontal structural member that supports wall panels and is primarily subjected to bending under horizontal loads, such as wind load. Gravity Load. *Load*, such as that produced by dead and live loads, acting in the downward direction. Header. A structural member located between two *joists* or between a joist and a wall which carries another joist or joists. It is usually made up of an angle, channel, or beam with saddle angle connections on each end for bearing. Horizontal Bridging. A continuous angle or other structural shape connected to the top and bottom chord of a joist. Inelastic Analysis. *Structural analysis* that takes into account inelastic material behavior, including plastic analysis. Instability. *Limit state* reached in the loading of a *structural component*, frame or structure in which a slight disturbance in the loads or geometry produces large displacements. **Joint.** Area where two or more ends, surfaces or edges are attached. Categorized by type of fastener or weld used and the method of force transfer. Joist. A structural load-carrying member with an open web system which supports floors and roofs utilizing hot-rolled or cold-formed steel and is designed as a simple span member. Currently, the SJI has the following joist designations: K-Series including KCS, LH-Series and DLH-Series. Joist Girder. A primary structural load-carrying member with an open web system designed as a simple span supporting equally spaced concentrated loads of a floor or roof system acting at the panel points of the member and utilizing hotrolled or cold-formed steel. Joist Substitute. A structural member who's intended use is for very short spans (10 feet or less) where open web steel joists are impractical. They are usually used for short spans in skewed bays, over corridors or for outriggers. It can be made up of two or four angles to form channel sections or box sections. Lateral Buckling. Buckling mode of a flexural member involving deflection normal to the plane of bending. Lateral-Torsional Buckling. Buckling mode of a flexural member involving deflection normal to the plane of bending occurring simultaneously with twist about the shear center of the cross section. Limit State. Condition in which a structure or component becomes unfit for service and is judged either to be no longer useful for its intended function (*serviceability limit state*) or to have reached its ultimate load-carrying capacity (*strength limit state*). **Load.** Force or other action that results from the weight of building materials, occupants and their possessions, environmental effects, differential movement, or restrained dimensional changes. **Load Effect.** Forces, stresses, and deformations produced in a *structural component* by the applied loads. **Load Factor.** Factor that accounts for deviations of the *nominal load* from the actual *load*, for uncertainties in the analysis that transforms the *load* into a *load effect*, and for the probability that more than one extreme *load* will occur simultaneously. Local Buckling**. *Limit state* of *buckling* of a compression element within a cross section. **LRFD** (Load and Resistance Factor Design). Method of proportioning *structural components* such that the *design strength* equals or exceeds the *required strength* of the component under the action of the LRFD load *combinations*. **LRFD Load Combination.** Load combination in the *applicable building code* intended for strength design (Load and Resistance Factor Design). Material. Joists, Joist Girders and accessories as provided by the Seller. Nailers. Strips of lumber attached to the top chord of a *joist* so plywood or other flooring can be nailed directly to the *joist* **Nominal Load.** Magnitude of the load specified by the *applicable building code*. **Nominal Strength*.** Strength of a structure or component (without the *resistance factor or safety factor* applied) to resist the *load effects*, as determined in accordance with these *Standard Specifications*. Owner. The entity that is identified as such in the Contract Documents. **Permanent Load.** Load in which variations over time are rare or of small magnitude. All other *loads* are *variable loads*. Placement Plans. Drawings that are prepared depicting the interpretation of the Contract Documents requirements for the *material* to be supplied by the *Seller*. These floor and/or roof plans are approved by the *Specifying Professional, Buyer* or *Owner* for conformance with the design requirements. The *Seller* uses the information contained on these drawings for final material design. A unique piece mark number is typically shown for the individual placement of *joists, Joist Girders* and accessories along with sections that describe the *end bearing* conditions and minimum attachment required so that *material* is placed in the proper location in the field. Ponding. Retention of water at low or irregular areas on a roof due solely to the deflection of flat roof framing. **Purlin.** Horizontal structural member that supports roof deck and is primarily subjected to bending under vertical loads such as dead, snow or wind loads. Quality Assurance. System of shop and field activities and controls implemented by the *owner* or his/her designated representative to provide confidence to the *owner* and the building authority that quality requirements are implemented. Quality Control. System of shop and field controls implemented by the *seller* and *erector* to ensure that contract and company fabrication and erection
requirements are met. **Required Strength*.** Forces, stress, and deformations produced in a *structural component*, determined by either *structural analysis*, for the *LRFD* or *ASD load combinations*, as appropriate, or as specified by these *Standard Specifications*. **Resistance Factor**, **\phi**. Factor that accounts for unavoidable deviations of the *nominal strength* from the actual strength and for the manner and consequences of failure. **Safety Factor,** Ω . Factor that accounts for deviations of the actual strength from the *nominal strength*, deviations of the actual load from the *nominal load*, uncertainties in the analysis that transforms the load into a load effect and for the manner and consequences of failure. Seller. A company certified by the Joist Institute engaged in the manufacture and distribution of *joists*, *Joist Girders* and accessories. **Service Load.** Load under which serviceability limit states are evaluated. Serviceability Limit State. Limiting condition affecting the ability of a structure to preserve its appearance, maintainability, durability, or the comfort of its occupants or function of machinery, under normal usage. Slenderness Ratio. The ratio of the effective length of a column to the radius of gyration of the column about the same axis of bending. Span. The centerline-to-centerline distance between structural steel supports such as a beam, column or *Joist Girder* or the *clear span* distance plus four inches onto a masonry or concrete wall. **Specified Minimum Yield Stress.** Lower limit of *yield stress* specified for a material as defined by ASTM. Specifying Professional. The licensed professional who is responsible for sealing the building Contract Documents, which indicates that he or she has performed or supervised the analysis, design and document preparation for the structure and has knowledge of the load-carrying structural system. Splice. *Connection* between two structural members joined at their ends by either bolting or welding to form a single, longer member. Stability. Condition reached in the loading of a *structural com*ponent, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements. Stabilizer Plate. A steel plate at a column or wall inserted between the end of a bottom *chord of a joist or Joist Girder*. Standard Specifications. Documents developed and maintained by the Steel Joist Institute for the design and manufacture of open web steel joists and Joist Girders. The term "SJI Standard Specifications" encompass by reference the following: ANSI/SJI-K-1.1 Standard Specifications for Open Web Steel Joists, **K-Series**; ANSI/SJI-LH/DLH-1.1 Standard Specifications for Longspan Steel Joists, **LH-Series** and Deep Longspan Steel Joists, **DLH-Series**; and ANSI/SJI-JG-1.1 Standard Specifications for **Joist Girders**. Strength Limit State. Limiting condition affecting the safety of the structure, in which the ultimate load-carrying capacity is reached. **Structural Analysis.** Determination of *load effects* on members and connections based on principles of structural mechanics Structural Drawings. The graphic or pictorial portions of the Contract Documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, connections, all loads, schedules, diagrams and notes. Tagged End. The end of a *joist* or *Joist Girder* where an identification or piece mark is shown by a metal tag. The member must be erected with this tagged end in the same position as the tagged end noted on the *placement plan*. **Tensile Strength (of material).** Maximum tensile stress that a material is capable of sustaining as defined by ASTM. Tie Joist. A joist that is bolted at a column. Top Chord Extension (TCX). The extended part of a *joist* top chord. This type of extension only has the two top chord angles extended past the joist seat. Torsional Buckling. *Buckling* mode in which a compression member twists about its shear center axis. Unbraced Length. Distance between braced points of a member, measured between the centers of gravity of the bracing members. Variable Load. Load not classified as permanent load. Webs. The vertical or diagonal members joined at the top and bottom *chords* of a *joist* or *Joist Girder* to form triangular patterns. **Yield Point.** First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM. **Yield Strength.** Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM. **Yield Stress.** Generic term to denote either *yield point or yield strength*, as appropriate for the material. # OSHA SAFETY STANDARDS FOR STEEL ERECTION # **BAY LENGTH DEFINITIONS** **JOIST GIRDERS** **STEEL BEAM** STEEL COLUMN **STEEL TUBE** **STEEL TUBE** **MASONRY OR TILT-UP** **MASONRY OR TILT-UP** **MASONRY WITH PILASTER** **MASONRY OR TILT-UP** **MASONRY OR TILT-UP** # MASONRY WITH FACE BRICK # § 1926.751 **DEFINITIONS** (Selected items only). <u>Anchored bridging</u> means that the steel joist bridging is connected to a bridging terminus point. <u>Bolted diagonal bridging</u> means diagonal bridging that is bolted to a steel joist or joists. <u>Bridging clip</u> means a device that is attached to the steel joist to allow the bolting of the bridging to the steel joist. <u>Bridging terminus point</u> means a wall, a beam, tandem joists (with all bridging installed and a horizontal truss in the plane of the top chord) or other element at an end or intermediate point(s) of a line of bridging that provides an anchor point for the steel joist bridging. <u>Column</u> means a load-carrying vertical member that is part of the primary skeletal framing system. Columns do not include posts. <u>Constructibility</u> means the ability to erect structural steel members in accordance with subpart R without having to alter the over-all structural design. <u>Construction load</u> (for joist erection) means any load other than the weight of the employee(s), the joists and the bridging bundle. <u>Erection bridging</u> means the bolted diagonal bridging that is required to be installed prior to releasing the hoisting cables from the steel joists. <u>Personal fall arrest system</u> means a system used to arrest an employee in a fall from a working level. A personal fall arrest system consists of an anchorage, connectors, a body harness and may include a lanyard, deceleration device, lifeline, or suitable combination of these. The use of a body belt for fall arrest is prohibited. <u>Project structural engineer</u> means the registered, licensed professional responsible for the design of structural steel framing and whose seal appears on the structural contract documents. <u>Qualified person</u> (also defined in § 1926.32) means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training, and experience, has successfully demonstrated the ability to solve or resolve problems relating to the subject matter, the work, or the project. <u>Steel joist</u> means an open web, secondary load-carrying member of 144 feet (43.9 m) or less, designed by the manufacturer, used for the support of floors and roofs. This does not include structural steel trusses or cold-formed joists. <u>Steel joist girder</u> means an open web, primary load-carrying member, designed by the manufacturer, used for the support of floors and roofs. This does not include structural steel trusses. <u>Structural steel</u> means a steel member, or a member made of a substitute material (such as, but not limited to, fiberglass, aluminum or composite members). These members include, but are not limited to, steel joists, joist girders, purlins, columns, beams, trusses, splices, seats, metal decking, girts, and all bridging, and cold formed metal framing which is integrated with the structural steel framing of a building. # § 1926.757 OPEN WEB STEEL JOISTS ### (a) General. - (1) Except as provided in paragraph (a)(2) of this section, where steel joists are used and columns are not framed in at least two directions with solid web structural steel members, a steel joist shall be field-bolted at the column to provide lateral stability to the column during erection. For the installation of this joist: - (i) A vertical stabilizer plate shall be provided on each column for steel joists. The plate shall be a minimum of 6 inch by 6 inch (152 mm by 152 mm) and shall extend at least 3 inches (76 mm) below the bottom chord of the joist with a 13/16 inch (21 mm) hole to provide an attachment point for guying or plumbing cables. - (ii) The bottom chords of steel joists at columns shall be stabilized to prevent rotation during erection. - (iii) Hoisting cables shall not be released until the seat at each end of the steel joist is field-bolted, and each end of the bottom chord is restrained by the column stabilizer plate. - (2) Where constructibility does not allow a steel joist to be installed at the column: - (i) an alternate means of stabilizing joists shall be installed on both sides near the column and shall: - (A) provide stability equivalent to paragraph (a)(1) of this section; - (B) be designed by a qualified person; - (C) be shop installed; and - (D) be included in the erection drawings. - (ii) hoisting cables shall not be released until the seat at each end of the steel joist is field-bolted and the joist is stabilized. - (3) Where steel joists at or near columns span 60 feet (18.3 m) or less, the joist shall be designed with sufficient strength to allow one employee to release the hoisting cable without the need for erection bridging. - (4) Where steel joists at or near columns span more than 60 feet (18.3 m), the joists shall be set in tandem with all bridging installed unless an alternative method of erection, which
provides equivalent stability to the steel joist, is designed by a qualified person and is included in the site-specific erection plan. - (5) A steel joist or steel joist girder shall not be placed on any support structure unless such structure is stabilized. - (6) When steel joist(s) are landed on a structure, they shall be secured to prevent unintentional displacement prior to installation. - (7) No modification that affects the strength of a steel joist or steel joist girder shall be made without the approval of the project structural engineer of record. # (8) Field-bolted joists. - (i) Except for steel joists that have been pre-assembled into panels, connections of individual steel joists to steel structures in bays of 40 feet (12.2 m) or more shall be fabricated to allow for field bolting during erection. - (ii) These connections shall be field-bolted unless constructibility does not allow. - (9) Steel joists and steel joist girders shall not be used as anchorage points for a fall arrest system unless written approval to do so is obtained from a qualified person. - (10) A bridging terminus point shall be established before bridging is installed. # (b) Attachment of steel joists and steel joist girders. - (1) Each end of "K" series steel joists shall be attached to the support structure with a minimum of two 1/8 -inch (3 mm) fillet welds 1 inch (25 mm) long or with two 1/2 -inch (13 mm) bolts, or the equivalent. - (2) Each end of "LH" and "DLH" series steel joists and steel joist girders shall be attached to the support structure with a minimum of two 1/4 -inch (6 mm) fillet welds 2 inches (51 mm) long, or with two 3/4 -inch (19 mm) bolts, or the equivalent. - (3) Except as provided in paragraph (b)(4) of this section, each steel joist shall be attached to the support structure, at least at one end on both sides of the seat, immediately upon placement in the final erection position and before additional joists are placed. - (4) Panels that have been pre-assembled from steel joists with bridging shall be attached to the structure at each corner before the hoisting cables are released. # (c) Erection of steel joists. - (1) Both sides of the seat of one end of each steel joist that requires bridging under Tables A and B shall be attached to the support structure before hoisting cables are released. - (2) For joists over 60 feet, both ends of the joist shall be attached as specified in paragraph (b) of this section and the provisions of paragraph (d) of this section met before the hoisting cables are released. - (3) On steel joists that do not require erection bridging under Tables A and B, only one employee shall be allowed on the joist until all bridging is installed and anchored. NOTE: TABLES "A" & "B" HAVE BEEN EDITED TO CONFORM WITH STEEL JOIST INSTITUTE BOLTED DIAGONAL BRIDGING REQUIRE-MENTS. EDITED ITEMS ARE SHOWN WITH A STRIKE THROUGH NOTATION. NEW ITEMS ARE SHOWN IN RED # ► TABLE A. — ERECTION BRIDGING FOR SHORT SPAN JOISTS | Joist | Span | |--------------------|--------| | 8L1 8K1 | . NM | | 10K1 | . NM | | 12K1 | . 23–0 | | 12K3 | . NM | | 12K5 | . NM | | 14K1 | . 27–0 | | 14K3 | . NM | | 14K4 | . NM | | 14K6 | . NM | | 16K2 | . 29–0 | | 16K3 | | | 16K4 | | | 16K5 | | | 16K6 | | | 16K7 | | | 16K9 | | | 18K3 | | | 18K4 | | | 18K5 | | | 18K6 | | | 18K7 | | | 18K9 | | | 18K10 | | | 20K3 | | | 20K4 | | | 20K5 | | | 20K6 | | | 20K7 | | | 20K9 | | | 20K10 | | | 22K4 | | | ==::0 | | | | | | 22K7
22K9 | | | 22K9 | | | 22K10 22K11 | | | 24K4 | | | 24K5 | | | 24K6 | | | 24K7 | | | 24K8 | | | 24K9 | | | 24K10 | - | | | | | | | | 26K5 | | | 26K6 | . 39–0 | NM = diagonal bolted bridging not mandatory for joists under 40 feet. | ► TABLE A. — ERECTION BRIDGING SHORT SPAN JOISTS (continued) | FOR | |--|--------| | Joist | Span | | 26K7 | - | | 26K8 | | | 26K9 | | | 26K10 | | | 26K12 | . NM | | 28K6 | . 40–0 | | 28K7 | | | 28K8 | • | | 28K9 | | | 28K10 | | | 28K12 | | | 30K7
30K8 | | | 30K9 | | | 30K10 | | | 30K11 | | | 30K12 | | | 10KCS1 | | | 10KCS2 | | | 10KCS3 | | | 12KCS1 | | | 12KCS2 | . NM | | 12KCS3 | . NM | | 14KCS1 | . NM | | 14KCS2 | . NM | | 14KCS3 | | | 16KCS2 | | | 16KCS3 | | | 16KCS4 | | | 16KCS5 | | | 18KCS2 | | | 18KCS3 | | | 18KCS5 | | | 20KCS2 | | | 20KCS3 | | | 20KCS4 | | | 20KCS5 | | | 22KCS2 | | | 22KCS3 | . 40–0 | | 22KCS4 | . NM | | 22KCS5 | . NM | | 24KCS2 | | | 24KCS3 | | | 24KCS4 | | | 24KCS5 | | | 26KCS2 | | | 26KCS3 | - | | 26KCS4 | | | 28KCS2 | | | 28KCS3 | | | 28KCS4 | | | 28KCS5 | | | 30KC53 30KCS3 | | | 30KCS4 | | | 30KCS5 | | | NM = diagonal bolted bridging not mandatory | | | for joists under 40 feet. | | | ► TABLE B. — ERECTION BRIDGING FOR | | | |--|-------------------|--| | LONG SPAN JOISTS | _ | | | Joist | Span | | | 18LH02 | . 33–0 | | | 18LH03 | | | | 18LH04 | | | | 18LH05 | | | | 18LH06 | | | | 18LH07 | | | | 18LH08 | | | | 18LH09 | | | | 20LH02 | | | | 20LH04 | | | | 20LH05 | | | | 20LH06 | | | | 20LH07 | | | | 20LH08 | | | | 20LH09 | | | | 20LH10 | | | | 24LH03 | | | | 24LH04 | | | | 24LH05 | . 40–0 | | | 24LH06 | . 45–0 | | | 24LH07 | . NM | | | 24LH08 | . NM | | | 24LH09 | . NM | | | 24LH10 | | | | 24LH11 | | | | 28LH05 | | | | 28LH06 | | | | 28LH07 | | | | 28LH08 | | | | 28LH09 | | | | 28LH11 | | | | 28LH12 | | | | 28LH13 | | | | 32LH06 | | | | 32LH07 | | | | 32LH08 | 55–0 through 60–0 | | | 32LH09 | . NM through 60–0 | | | 32LH10 | | | | 32LH11 | | | | 32LH12 | | | | 32LH13 | . NM through 60–0 | | | 32LH14 | | | | 32LH15 | | | | 36LH07 | | | | 36LH08 | | | | 36LH09 | | | | 36LH10 | | | | 36LH11 | | | | 36LH12 | | | | 36LH13 | | | | 36LH14 | | | | 40LH08 | | | | 40LH09 | | | | 44LH09 | | | | NM = diagonal bolted bridging not many | | | NM = diagonal bolted bridging not mandatory for joists under 40 feet. - (4) Employees shall not be allowed on steel joists where the span of the steel joist is equal to or greater than the span shown in Tables A and B except in accordance with § 1926.757(d). - (5) When permanent bridging terminus points cannot be used during erection, additional temporary bridging terminus points are required to provide stability. # (d) Erection bridging. - (1) Where the span of the steel joist is equal to or greater than the span shown in Tables A and B, the following shall apply: - A row of bolted diagonal erection bridging shall be installed near the midspan of the steel joist; - (ii) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored; and - (iii) No more than one employee shall be allowed on these spans until all other bridging is installed and anchored. - (2) Where the span of the steel joist is over 60 feet (18.3 m) through 100 feet (30.5 m), the following shall apply: - (i) All rows of bridging shall be bolted diagonal bridging; - (ii) Two rows of bolted diagonal erection bridging shall be installed near the third points of the steel joist; - (iii) Hoisting cables shall not be released until this bolted diagonal erection bridging is installed and anchored: and - (iv) No more than two employees shall be allowed on these spans until all other bridging is installed and anchored. - (3) Where the span of the steel joist is over 100 feet (30.5 m) through 144 feet (43.9 m), the following shall apply: - (i) All rows of bridging shall be bolted diagonal bridging; - (ii) Hoisting cables shall not be released until all bridging is installed and anchored; and - (iii) No more than two employees shall be allowed on these spans until all bridging is installed and anchored. - (4) For steel members spanning over 144 feet (43.9 m), the erection methods used shall be in accordance with § 1926.756. - (5) Where any steel joist specified in paragraphs (c)(2) and (d)(1), (d)(2), and (d)(3) of this section is a bottom chord bearing joist, a row of bolted diagonal bridging shall be provided near the support(s). This bridging shall be installed and anchored before the hoisting cable(s) is released. - (6) When bolted diagonal erection bridging is required by this section, the following shall apply: - The bridging shall be indicated on the erection drawing; - (ii) The erection drawing shall be the exclusive indicator of the proper placement of this bridging; - (iii) Shop-installed bridging clips, or functional equivalents, shall be used where the bridging bolts to the steel joists; - (iv) When two pieces of bridging are attached to the steel joist by a common bolt, the nut that secures the first piece of bridging shall not be removed from the bolt for the attachment of the second; and - (v) Bridging attachments shall not protrude above the top chord of the steel joist. ### (e) Landing and placing loads. - (1) During the construction period, the employer placing a load on steel joists shall ensure that the load is distributed so as not to exceed the carrying capacity of any steel joist. - (2) Except for paragraph (e)(4) of this section, no construction loads are allowed on the steel joists until all bridging is installed and anchored and all joist-bearing ends are attached. - (3) The weight of a bundle of joist bridging shall not exceed a total of 1,000 pounds (454 kg). A bundle of joist bridging shall be placed on a minimum of three steel joists that are secured at one end. The edge of the bridging bundle shall be positioned within 1 foot (.30 m) of the secured end. - (4) No bundle of decking may be placed on steel joists until all bridging has been installed and anchored and all joist bearing ends attached, unless all of the following conditions are met: - The employer has first determined from a qualified person and documented in a site-specific erection plan that the structure or portion of the structure is capable of supporting the load; - (ii) The bundle of decking is placed on a minimum of three steel joists; - (iii) The joists supporting the bundle of decking are attached at both ends;
- (iv) At least one row of bridging is installed and anchored; - (v) The total weight of the bundle of decking does not exceed 4,000 pounds (1816 kg); and - (vi) Placement of the bundle of decking shall be in accordance with paragraph (e)(5) of this section. - (5) The edge of the construction load shall be placed within 1 foot (.30 m) of the bearing surface of the joist end. # ILLUSTRATIONS OF OSHA BRIDGING TERMINUS POINTS (NON-MANDATORY) Guidelines for Complying with OSHA Steel Erection Standard, Paragraph §1926.757(a)(10) and §1926.757(c)(5). HORIZONTAL BRIDGING TERMINUS AT WALL HORIZONTAL BRIDGING TERMINUS AT PANEL WALL HORIZONTAL BRIDGING TERMINUS AT WALL HORIZONTAL BRIDGING TERMINUS AT STRUCTURAL SHAPE HORIZONTAL BRIDGING TERMINUS AT STRUCTURAL SHAPE WITH OPTIONAL "X-BRIDGING" BOLTED DIAGONAL BRIDGING TERMINUS AT WALL BOLTED DIAGONAL BRIDGING TERMINUS AT WALL BOLTED DIAGONAL BRIDGING TERMINUS AT WALL JOISTS PAIR BRIDGING TERMINUS POINT JOISTS PAIR BRIDGING TERMINUS POINT HORIZONTAL BRIDGING TERMINUS POINT SECURED BY TEMP. GUY CABLES DIAGONAL BRIDGING TERMINUS POINT SECURED BY TEMP. GUY CABLES # **PUBLICATIONS** Vulcraft (Refer to back cover for address and telephone number of division nearest you) STEEL JOISTS AND JOIST GIRDERS 2003 VULCRAFT COMPOSITE AND NONCOMPOSITE FLOOR JOISTS 1996 DESIGNING WITH VULCRAFT JOIST, STEEL JOIST GIRDERS AND STEEL DECK, 2nd ed. James Fisher, Ph.D., P.E., Michael West, P.E., AIA, Juius P. Van de Pas, P.E. (A 168 page book provided to engineers and architects for help in designing with steel joists, joist girders and steel deck) **STEEL DECK INSTITUTE -** P.O. Box 25, Fox River Grove, IL 60021 Phone: (847) 458-4647 Fax (847) 458-4648 e-mail steve@sdi.org DESIGN MANUAL FOR COMPOSITE DECKS, FORM DECKS AND ROOF DECKS - NO. 30 ROOF DECK CONSTRUCTION HANDBOOK - NO. RDCH1 DIAPHRAGM DESIGN MANUAL SECOND EDITION NO. DDMO2 COMPREHENSIVE STEEL DECK INSTITUTE BINDER - NO. BF SDI MANUAL OF CONSTRUCTION WITH STEEL DECK - NO. MOC1 (650KB) COMPOSITE STEEL DECK DESIGN HANDBOOK. NO. CDD2 STANDARD PRACTICE DETAILS. - NO. SPD2 DECK DAMAGE & PENETRATIONS - NO. DDP HOW TO UPDATE DIAPHRAGM TABLES - NO. HUDT METAL DECK & CONCRETE QUANTITIES - NO. MDCQ A RATIONAL APPROACH TO STEEL DECK CORROSION PROTECTION - NO. SDCP (278 KB) Steel Joist Institute - 3127 Mr. Joe White Avenue, Myrtle Beach, SC 29577-6760 (843) 626-1995 Fax: 843-626-5565, e-mail: stljoist@infi.net, web site: www.steeljoist.org STANDARD SPECIFICATIONS, LOAD TABLES AND WEIGHT TABLES FOR STEEL JOISTS AND JOIST GIRDERS 42ND Edition (2005) 75-YEAR MANUAL TECHNICAL DIGEST #3 - Ponding (1971) TECHNICAL DIGEST #5 - Vibration (1988) TECHNICAL DIGEST #6 - Uplift Loading (1998) TECHNICAL DIGEST #8 - Welding of Open Web Steel Joist (1983) TECHNICAL DIGEST #9 - Handling and Erection (1987) TECHNICAL DIGEST #11 - Design of Joist - Girder Frames (1999) GUIDE FOR SPECIFYING STEEL JOISTS WITH LOAD AND RESISTANCE FACTOR DESIGN (2002) NEW LRFD GUIDE (2000) COMPUTER VIBRATION PROGRAM Ver1.2 (Used in Conjunction with Technical Digest #5) SJI VIDEO - Introduction to Steel Joists VIDEO - SAFE ERECTION OF OPEN WEB STEEL JOISTS AND JOIST GIRDERS (English & Spanish) # **NOTES** # **VULCRAFT – GROUP Manufacturing Locations** # **ALABAMA** 7205 Gault Avenue N. Fort Payne, AL 35967 P.O. Box 680169 Fort Payne, AL 35968 256-845-2460 Fax: 256-845-2823 # **NEBRASKA** 1601 West Omaha Avenue Norfolk, NE 68701 P.O. Box 59 Norfolk, NE 68702 402-644-8500 Fax: 402-644-8528 # **TEXAS** 287 North Main Extension P.O. Box 186 Grapeland, TX 75844 936-687-4665 Fax: 936-687-4290 # **VULCRAFT OF NEW YORK, INC.** 5362 Railroad Street P.O. Box 280 Chemung, NY 14825 607-529-9000 Fax: 607-529-9001 # **INDIANA** 6610 County Road 60 P.O. Box 1000 St. Joe, IN 46785 260-337-1800 Fax: 260-337-1801 # **SOUTH CAROLINA** 1501 West Darlington Street P.O. Box 100520 Florence, SC 29501 843-662-0381 Fax: 843-662-3132 # UTAH 1875 West Highway 13 South P.O. Box 637 Brigham City, UT 84302 435-734-9433 Fax: 435-723-5423 # **VULCRAFT - NATIONAL ACCOUNTS** 1000 Hurricane Shoals Road Building A - Suite 150 Lawrenceville, GA 30043 770-338-0970 Fax: 770-295-0001